【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)
In Chinese mythology, Pangu is the first living being and the creator of the sky and the earth. He woke up from an egg and split the egg into two parts: the sky and the earth.
At the beginning, there was no mountain on the earth, only stones all over the land.
There were N piles of stones, numbered from 1 to N. Pangu wanted to merge all of them into one pile to build a great mountain. If the sum of stones of some piles was S, Pangu would need S seconds to pile them into one pile, and there would be S stones in the new pile.
Unfortunately, every time Pangu could only merge successive piles into one pile. And the number of piles he merged shouldn't be less than L or greater than R.
Pangu wanted to finish this as soon as possible.
Can you help him? If there was no solution, you should answer '0'.
Input
There are multiple test cases.
The first line of each case contains three integers N,L,R as above mentioned (2<=N<=100,2<=L<=R<=N).
The second line of each case contains N integers a1,a2 …aN (1<= ai <=1000,i= 1…N ), indicating the number of stones of pile 1, pile 2 …pile N.
The number of test cases is less than 110 and there are at most 5 test cases in which N >= 50.
Output
For each test case, you should output the minimum time(in seconds) Pangu had to take . If it was impossible for Pangu to do his job, you should output 0.
Sample Input
3 2 2
1 2 3
3 2 3
1 2 3
4 3 3
1 2 3 4
Sample Output
9
6
0
题意:
n个石子堆排成一排,每次可以将连续的[L,R]堆石子合并成一堆,花费为要合并的石子总数。求将所有石子合并成一堆的最小花费,如无法实现则输出0。
思路:
dp[i][j][k]表示将区间[i, j]合并成k堆的最小代价,转移有:
k=1时:
dp[i][j][1]=min(dp[i][j][1],dp[i][j][q]+sum[j]-sum[i-1])
k>1时:
dp[i][j][q]=min(dp[i][j][q],dp[i][k][q-1]+dp[k+1][j][1])
#include<bits/stdc++.h>
using namespace std;
#define MAX 105
#define INF 0x3f3f3f3f
int sum[MAX],dp[MAX][MAX][MAX];
int main()
{
int n,l,r,i,j,k;
while(scanf("%d%d%d",&n,&l,&r)!=EOF)
{
memset(dp,INF,sizeof(dp));
for(i=;i<=n;i++)
{
scanf("%d",&sum[i]);
dp[i][i][]=;
sum[i]+=sum[i-];
}
int len;
for(len=l;len<=r;len++) //merge长度 len[l,r]
{
for(i=;i+len-<=n;i++)//merge范围 [i,i+len-1]
{
j=i+len-;
dp[i][j][len]=;
dp[i][j][]=sum[j]-sum[i-];
}
} int q;
for(len=;len<=n;len++) //merge长度 len[2,n]
{
for(i=;i+len-<=n;i++)//merge范围 [i,i+len-1]
{
j=i+len-;
for(k=i;k<j;k++)
for(q=;q<=len;q++)
dp[i][j][q]=min(dp[i][j][q],dp[i][k][q-]+dp[k+][j][]);
for(q=l;q<=r;q++)
dp[i][j][]=min(dp[i][j][],dp[i][j][q]+sum[j]-sum[i-]);
}
} if(dp[][n][]<INF)
printf("%d\n",dp[][n][]);
else printf("0\n");
}
return ;
}
【2017 ICPC亚洲区域赛北京站 J】Pangu and Stones(区间dp)的更多相关文章
- 2017 ACM-ICPC亚洲区域赛北京站J题 Pangu and Stones 题解 区间DP
题目链接:http://www.hihocoder.com/problemset/problem/1636 题目描述 在中国古代神话中,盘古是时间第一个人并且开天辟地,它从混沌中醒来并把混沌分为天地. ...
- 2017北京网络赛 J Pangu and Stones 区间DP(石子归并)
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- 【2016 ICPC亚洲区域赛北京站 E】What a Ridiculous Election(BFS预处理)
Description In country Light Tower, a presidential election is going on. There are two candidates, ...
- 【2017 ICPC亚洲区域赛沈阳站 K】Rabbits(思维)
Problem Description Here N (N ≥ 3) rabbits are playing by the river. They are playing on a number li ...
- 2015 ACM / ICPC 亚洲区域赛总结(长春站&北京站)
队名:Unlimited Code Works(无尽编码) 队员:Wu.Wang.Zhou 先说一下队伍:Wu是大三学长:Wang高中noip省一:我最渣,去年来大学开始学的a+b,参加今年区域赛之 ...
- 2014ACM/ICPC亚洲区域赛牡丹江站汇总
球队内线我也总水平,这所学校得到了前所未有的8地方,因为只有两个少年队.因此,我们13并且可以被分配到的地方,因为13和非常大的数目.据领队谁oj在之上a谁去让更多的冠军.我和tyh,sxk,doub ...
- icpc 2017北京 J题 Pangu and Stones 区间DP
#1636 : Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the fi ...
- hihocoder 1636 : Pangu and Stones(区间dp)
Pangu and Stones 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 In Chinese mythology, Pangu is the first livi ...
- 2017 ICPC西安区域赛 A - XOR (线段树并线性基)
链接:https://nanti.jisuanke.com/t/A1607 题面: Consider an array AA with n elements . Each of its eleme ...
随机推荐
- Web Api ——创建WebAPI
方法在Win10 + VS2017(MVC5)测试通过 1.建立 WebApi项目: 选择菜单 “文件->新建醒目->web ->ASP.NET Web 应用程序” 输入项目名称和位 ...
- Android 简单图片浏览器 读取sdcard图片+形成缩略图+Gallery
1.读取SD卡上面的图片信息 //想要的返回值所在的列 String[] projection = { MediaStore.Images.Thumbnails._ID}; //图片信息存储在 and ...
- SSM 框架-05-详细整合教程(Eclipse版)(Spring+SpringMVC+MyBatis)
SSM 框架-05-详细整合教程(Eclipse版)(Spring+SpringMVC+MyBatis) 如果你使用的是 Intellij IDEA,请查看: SSM的配置流程详细的写了出来,方便很少 ...
- OllyDbg的基本使用
注:内容整理自<逆向工程核心原理>,结合我的OllyDbg版本修改了一些内容 1. OllyDbg常用命令及其快捷键 指令 快捷键 含义 Restart Ctrl+F2 重新开始调试 St ...
- android资源的诡异问题
最近,新开发版本,正在处于扫BUG的阶段. 发现一个比较诡异的问题,一个控件的颜色,背景色与预先设定的值,发生不一致.其他的类型的控件有同样的设置,但是现实结果正常. 今天,专门解决这个问题. 经过各 ...
- 【Oracle】等待事件详细内容
一.等待事件的相关知识 1.1 等待事件主要可以分为两类,即空闲(IDLE)等待事件和非空闲(NON-IDLE)等待事件.1). 空闲等待事件指ORACLE正等待某种工作,在诊断和优化数据库的时候,不 ...
- .NET的那些事儿(9)——C# 2.0 中用iTextSharp制作PDF(基础篇) .
该文主要介绍如何借助iTextSharp在C# 2.0中制作PDF文件,本文的架构大致按照iTextSharp的操作文档进行翻译,如果需要查看原文,请点击一下链接:http://itextsharp. ...
- [tools]excel转lua的python实现
time:2015/04/13 描述:需要将excel表格内容转成lua,并且作为工具使用,能够批量转换 步骤: (1)文章[1]已经做了大部分的内容,而且也已经能够使用了 (2)根据自己新的需求: ...
- Linxu下 expect的实用实例_1
案例 例1:从本机自动登录到远程机器192.168.1.200(端口是22,密码是:PASSWORD)登录到远程机器后做以下几个操作:1)useradd wangshibo2)mkdir /opt/t ...
- 彻底关闭Firefox自动更新的方法
自己最近在使用firefox进行自动化测试时,发现配置好的firefox总是会自动更新,主要是因为一些高版本的浏览器无法安装firepath,没有firepath的火狐浏览器使用起来总是有很多的不方便 ...