Time Limit: 1000MS   Memory Limit: 65536K

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

Output

The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2
题意:输入一个数字(<=1e5)求该数可由几种在素数表中连续的素数之和组成
思路:用尺取法,注意退出循环的情况
 #include <iostream>
#include <cstdio>
using namespace std;
#define N 10010 int prime[N];//素数表 int quickmod(int a,int b,int c)//快速幂模
{
int ans=; a=a%c; while (b)
{
if (b&)
{
ans=ans*a%c;
}
a=a*a%c;
b>>=;
} return ans;
} bool miller(int n)//米勒求素数法
{
int i,s[]={,,,,}; for (i=;i<;i++)
{
if (n==s[i])
{
return true;
} if (quickmod(s[i],n-,n)!=)
{
return false;
}
}
return true;
} void init()
{
int i,j; for (i=,j=;i<N;i++)//坑点:注意是i<N,而不是j<N
{
if (miller(i))
{
prime[j]=i;
j++;
}
}
} void test()
{
int i;
for (i=;i<N;i++)
{
printf("%6d",prime[i]);
}
} int main()
{
int n,l,r,ans,sum;//l为尺取法的左端点,r为右端点,ans为答案,sum为该段素数和 init();
// test(); while (scanf("%d",&n)&&n)
{
l=r=ans=;
sum=; for (;;)
{
while (sum<n&&prime[r+]<=n)//prime[r+1]<=n表示该数是可加的,意即右端点还可以继续右移
{
sum+=prime[++r];
} if (sum<n)//右端点无法继续右移,而左端点的右移只能使sum减小,意即sum数组无法再大于等于n,就可以退出循环
{
break;
} else if (sum>n)
{
sum-=prime[l++];
} else if (sum==n)
{
ans++;
sum=sum-prime[l];
l++;
}
} printf("%d\n",ans);
} return ;
}

poj 2739 Sum of Consecutive Prime Numbers 尺取法的更多相关文章

  1. POJ.2739 Sum of Consecutive Prime Numbers(水)

    POJ.2739 Sum of Consecutive Prime Numbers(水) 代码总览 #include <cstdio> #include <cstring> # ...

  2. POJ 2739 Sum of Consecutive Prime Numbers(素数)

    POJ 2739 Sum of Consecutive Prime Numbers(素数) http://poj.org/problem? id=2739 题意: 给你一个10000以内的自然数X.然 ...

  3. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

  6. POJ 2739 Sum of Consecutive Prime Numbers( *【素数存表】+暴力枚举 )

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19895 ...

  7. POJ 2739 Sum of Consecutive Prime Numbers【素数打表】

    解题思路:给定一个数,判定它由几个连续的素数构成,输出这样的种数 用的筛法素数打表 Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memo ...

  8. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

  9. poj 2739 Sum of Consecutive Prime Numbers 小结

     Description Some positive integers can be represented by a sum of one or more consecutive prime num ...

随机推荐

  1. 沉淀,再出发:python爬虫的再次思考

    沉淀,再出发:python爬虫的再次思考 一.前言    之前笔者就写过python爬虫的相关文档,不过当时因为知识所限,理解和掌握的东西都非常的少,并且使用更多的是python2.x的版本的功能,现 ...

  2. December 28th 2016 Week 53rd Wednesday

    Knowledge is a treasure, but practice is the key to it. 知识是珍宝,而实践是获取她的钥匙. I know a lot, but what I r ...

  3. Linux命令--压缩解压(简化版)

    Linux tar.gz.tar.bz2.zip 等解压缩.压缩命令详解(简化版) Linux 常用的压缩与解压缩命令有:tar.gzip.gunzip.bzip2.bunzip2.compress ...

  4. Python中readline()函数 去除换行符

    从Python中readline()函数读取的一行内容中含有换行符\n,很多时候我们需要处理不含有换行符的字符串,此时就要去掉换行符\n. 方法是使用strip()函数. 例子如下: f = open ...

  5. linux性能系列--cpu

    一.先看看什么是CPU? 回答:中央处理器(Central Processing Unit)的缩写,即CPU,CPU是电脑中的核心配件,只有火柴盒那么大,几十张纸那么厚,但它却是一台计算机的运算核心和 ...

  6. CSS3动画中的位置设定问题

    水平居中的不同方法实现: position: absolute; margin: auto; left:; right:; position: absolute; left:%; -webkit-tr ...

  7. 我的第一个 Servlet

    简单记录一下我从头写一个 Servlet 的过程. 我安装的是 Tomcat 7 版本,在 Ubuntu 18.04 上运行,IDE 为 Intellij IDEA. 首先创建一个 Java Web ...

  8. BZOJ1058:[ZJOI2007]报表统计(Splay,堆)

    Description 小Q的妈妈是一个出纳,经常需要做一些统计报表的工作.今天是妈妈的生日,小Q希望可以帮妈妈分担一些工 作,作为她的生日礼物之一.经过仔细观察,小Q发现统计一张报表实际上是维护一个 ...

  9. [POI2006]TET-Tetris 3D

    题目 二维线段树板子题啊 但是惊讶的发现我不会打标记 毕竟内层是线段树不能\(pushup\)也不能\(pushdown\) 于是考虑一下标记永久化 其实非常显然\(mx_i\)表示区间最大值,\(t ...

  10. urllib库基本使用

    #导入urllib库 import urllib.request #打开网址 file=urllib.request.urlopen("http://www.sohu.com/", ...