【转】简述TCP的三次握手过程
TCP握手协议
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.
第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认;
SYN:同步序列编号(Synchronize Sequence Numbers)
第二次握手:服务器收到syn包,必须确认客户的SYN(ack=j+1),同时自己也发送一个SYN包(syn=k),即SYN+ACK包,此时服务器进入SYN_RECV状态;
第三次握手:客户端收到服务器的SYN+ACK包,向服务器发送确认包ACK(ack=k+1),此包发送完毕,客户端和服务器进入ESTABLISHED状态,完成三次握手.
完成三次握手,客户端与服务器开始传送数据
A与B建立TCP连接时:首先A向B发SYN(同步请求),然后B回复SYN
+ACK(同步请求应答),最后A回复ACK确认,这样TCP的一次连接(三次握手)的过程就建立了!
一、TCP报文格式
TCP/IP协议的详细信息参看《TCP/IP协议详解》三卷本。下面是TCP报文格式图:

图1 TCP报文格式
上图中有几个字段需要重点介绍下:
(1)序号:Seq序号,占32位,用来标识从TCP源端向目的端发送的字节流,发起方发送数据时对此进行标记。
(2)确认序号:Ack序号,占32位,只有ACK标志位为1时,确认序号字段才有效,Ack=Seq+1。
(3)标志位:共6个,即URG、ACK、PSH、RST、SYN、FIN等,具体含义如下:
(A)URG:紧急指针(urgent pointer)有效。
(B)ACK:确认序号有效。
(C)PSH:接收方应该尽快将这个报文交给应用层。
(D)RST:重置连接。
(E)SYN:发起一个新连接。
(F)FIN:释放一个连接。
需要注意的是:
(A)不要将确认序号Ack与标志位中的ACK搞混了。
(B)确认方Ack=发起方Req+1,两端配对。
二、三次握手
所谓三次握手(Three-Way Handshake)即建立TCP连接,就是指建立一个TCP连接时,需要客户端和服务端总共发送3个包以确认连接的建立。在socket编程中,这一过程由客户端执行connect来触发,整个流程如下图所示:

图2 TCP三次握手
(1)第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认。
(2)第二次握手:Server收到数据包后由标志位SYN=1知道Client请求建立连接,Server将标志位SYN和ACK都置为1,ack=J+1,随机产生一个值seq=K,并将该数据包发送给Client以确认连接请求,Server进入SYN_RCVD状态。
(3)第三次握手:Client收到确认后,检查ack是否为J+1,ACK是否为1,如果正确则将标志位ACK置为1,ack=K+1,并将该数据包发送给Server,Server检查ack是否为K+1,ACK是否为1,如果正确则连接建立成功,Client和Server进入ESTABLISHED状态,完成三次握手,随后Client与Server之间可以开始传输数据了。
SYN攻击:
在三次握手过程中,Server发送SYN-ACK之后,收到Client的ACK之前的TCP连接称为半连接(half-open connect),此时Server处于SYN_RCVD状态,当收到ACK后,Server转入ESTABLISHED状态。SYN攻击就是Client在短时间内伪造大量不存在的IP地址,并向Server不断地发送SYN包,Server回复确认包,并等待Client的确认,由于源地址是不存在的,因此,Server需要不断重发直至超时,这些伪造的SYN包将产时间占用未连接队列,导致正常的SYN请求因为队列满而被丢弃,从而引起网络堵塞甚至系统瘫痪。SYN攻击时一种典型的DDOS攻击,检测SYN攻击的方式非常简单,即当Server上有大量半连接状态且源IP地址是随机的,则可以断定遭到SYN攻击了,使用如下命令可以让之现行:
#netstat -nap | grep SYN_RECV
三、四次挥手
三次握手耳熟能详,四次挥手估计就
,所谓四次挥手(Four-Way Wavehand)即终止TCP连接,就是指断开一个TCP连接时,需要客户端和服务端总共发送4个包以确认连接的断开。在socket编程中,这一过程由客户端或服务端任一方执行close来触发,整个流程如下图所示:

图3 TCP四次挥手
由于TCP连接时全双工的,因此,每个方向都必须要单独进行关闭,这一原则是当一方完成数据发送任务后,发送一个FIN来终止这一方向的连接,收到一个FIN只是意味着这一方向上没有数据流动了,即不会再收到数据了,但是在这个TCP连接上仍然能够发送数据,直到这一方向也发送了FIN。首先进行关闭的一方将执行主动关闭,而另一方则执行被动关闭,上图描述的即是如此。
(1)第一次挥手:Client发送一个FIN,用来关闭Client到Server的数据传送,Client进入FIN_WAIT_1状态。
(2)第二次挥手:Server收到FIN后,发送一个ACK给Client,确认序号为收到序号+1(与SYN相同,一个FIN占用一个序号),Server进入CLOSE_WAIT状态。
(3)第三次挥手:Server发送一个FIN,用来关闭Server到Client的数据传送,Server进入LAST_ACK状态。
(4)第四次挥手:Client收到FIN后,Client进入TIME_WAIT状态,接着发送一个ACK给Server,确认序号为收到序号+1,Server进入CLOSED状态,完成四次挥手。
上面是一方主动关闭,另一方被动关闭的情况,实际中还会出现同时发起主动关闭的情况,具体流程如下图:

图4 同时挥手
四、附注
关于三次握手与四次挥手通常都会有典型的面试题,在此提出供有需求的XDJM们参考:
(1)三次握手是什么或者流程?四次握手呢?答案前面分析就是。
(2)为什么建立连接是三次握手,而关闭连接却是四次挥手呢?
这是因为服务端在LISTEN状态下,收到建立连接请求的SYN报文后,把ACK和SYN放在一个报文里发送给客户端。而关闭连接时,当收到对方的FIN报文时,仅仅表示对方不再发送数据了但是还能接收数据,己方也未必全部数据都发送给对方了,所以己方可以立即close,也可以发送一些数据给对方后,再发送FIN报文给对方来表示同意现在关闭连接,因此,己方ACK和FIN一般都会分开发送。
【转】简述TCP的三次握手过程的更多相关文章
- 简述TCP的三次握手过程
一.TCP报文格式 TCP/IP协议的详细信息参看<TCP/IP协议详解>三卷本.下面是TCP报文格式图: 图1 TCP报文格式 上图中有几个字段需要重点介绍下: ...
- TCP的三次握手过程与四次挥手
TCP握手协议 在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确 ...
- 面试连环炮系列(四):说说TCP的三次握手过程
说说TCP三次握手的过程? 第一次握手:Client将标志位SYN置为1,随机产生一个值seq=J,并将该数据包发送给Server,Client进入SYN_SENT状态,等待Server确认. 第二次 ...
- TCP 协议三次握手过程解析带实例
TCP(Transmission Control Protocol) 传输控制协议 TCP是主机对主机层的传输控制协议,提供可靠的连接服务,采用三次握手确认建立一个连接: 位码即tcp标志位,有6种标 ...
- 回顾TCP的三次握手过程
在TCP/IP协议中,TCP协议提供可靠的连接服务,采用三次握手建立一个连接.第一次握手:建立连接时,客户端发送syn包(syn=j)到服务器,并进入SYN_SEND状态,等待服务器确认: SYN:同 ...
- TCP的三次握手过程
TCP::传输控制协议(Transmission Control Protocol ) 是一种面相连接的.可靠的.基于字节流的 传输层通信协议. TCP是一种面相连接的协议.其显著的特点就是在 ...
- [TCP/IP] 三次握手过程中有哪些不安全性
1)SYN flood 泛洪攻击 , 伪装的IP向服务器发送一个SYN请求建立连接,然后服务器向该IP回复SYN和ACK,但是找不到该IP对应的主机,当超时时服务器收不到ACK会重复发送.当大量的攻击 ...
- TCP的三次握手过程?为什么会采用三次握手,若采用二次握手可以吗
谢希仁版<计算机网络>中的例子: "已失效的连接请求报文段”的产生在这样一种情况下: client发出的第一个连接请求报文段并没有丢失,而是在某个网络结点长时间的滞留了,以致延误 ...
- TCP连接建立的三次握手过程可以携带数据吗?
前几天实验室的群里扔出了这样一个问题:TCP连接建立的三次握手过程可以携带数据吗?突然发现自己还真不清楚这个问题,平日里用tcpdump或者Wireshark抓包时,从来没留意过第三次握手的ACK包有 ...
随机推荐
- restframework api (一)认证
一 什么是RESTful REST与技术无关,代表的是一种软件架构风格,REST是Representational State Transfer的简称,中文翻译为“表征状态转移” REST从资源的角度 ...
- 哈理工OJ 1328
感觉其实可以不水的. //好像是一道特别水的小学数学题.但是我确实看了很久有试了几个样例才懂得.T_T // 先判断是不是素数.如果是素数的话.An-1一定不等于An.否则的话. // 继续找如果有一 ...
- 用ansible剧本搭建lnmp
首先在主服务器上搭建ansible直接用云yum装就可以, yum -y install ansible 如果copy报错一下的语句 "msg": "Aborting, ...
- Hadoop生态系统介绍
Hadoop生态系统Hadoop1.x 的各项目介绍1. HDFS2. MapReduce3. Hive4. Pig5. Mahout6. ZooKeeper7. HBase8. Sqoop9. Fl ...
- Struts2基本使用(三)--数据交互
Struts2中的数据交互 在Struts2中我们不必再使用request.getParameter()这种方式来获取前台发送到服务器的参数. 我们可以在服务器端的Java类中直接声明一个和前台发送数 ...
- 关于poi操作excel我使用的一些修饰操作
被这情况恶心了.我的excel默认为常规,然后写入数字就成类似number类型,获取值得到的是double类型,2变成2.0.号码变成科学计数法. 做功能找了一段时间,保存下来防止忘记下次浪费时间. ...
- Linux运维学习笔记-软硬链接知识总结
文件链接 硬链接,通过索引节点来进行链接 硬链接原理图 硬链接的创建: 直接执行命令“ln 源文件 硬链接文件”,即可完成创建硬链接. 硬链接知识小结: 1.具有相同Inode节点号的多个文件是互 ...
- (转)List<T>的各种排序方法
近日,在工作的时候遇到要对一个大的List<T>集合进行排序,于是就了解下各种List<T>的排序方法. 首先,排序自然就会想到用Sort方法,看看List<T>的 ...
- Nginx 设置rewrite规则是遇到的一个{}大括号引发的报错问题
一个群友提到: 用nginx image_filter模块裁图,用!拼宽高能够实现,现在想用参数传宽高总是报错,配置如下: location ~ ^/images/.* { if ( $q ...
- spring注解事务使用总结
在使用spring的注解事务的时候,需要考虑到事务的传播行为.遇到什么类型的异常时,事务才起作用.事务方法之间的嵌套调用时,怎么样才生效等等诸多问题.网上搜到很多的主要还是一堆理论文字描述,我这里给出 ...