题意:给定n个点,你的任务是让它们都连通。你可以新建一些边,费用等于两点距离的平方(当然越小越好),另外还有几种“套餐”,可以购买,你购买的话,那么有些边就可以连接起来,

每个“套餐”,也是要花费的,让你求出最少花费。

析:首先想到的是把所有情况都考虑算一下,然后找出最少的,先算没有“套餐”的,然后算有的,用二进制枚举的话,总时间复杂度为O(2qn2+n2logn),这个时间复杂度太大了吧,肯定会超时,

那么我们就可以优化一下,首先先算出来最小生成树,并且把每条边都保存下来,那么加了“套餐”之后,就不用全部枚举了,这是一个优化,然后在买“套餐”后,那么有的权值就变成了0,

这个也不要加上,再重新枚举,我们在之前就把它们连接上就OK。其他的和最小生成树一样。

代码如下:

#include <cstdio>
#include <iostream>
#include <algorithm> using namespace std;
const int maxn = 1000 + 10;
struct node{
int u, v, w;
bool operator < (const node &p) const {
return w < p.w;
}
};
node a[maxn*maxn/2];
int p[maxn], x[maxn], y[maxn], n, m, q[8][maxn], c[2][10], indx, l[maxn]; int Find(int x){
return x == p[x] ? x : p[x] = Find(p[x]);
} int Kruskal(){//最小生成树
int ans = 0;
l[0] = 0;
for(int i = 0; i < indx; ++i){
int x = Find(a[i].u);
int y = Find(a[i].v);
if(x != y){
ans += a[i].w;
p[x] = y;
l[++l[0]] = i;//把最小生成树的边都保存下来
}
}
return ans;
} int Kruskal2(){//买“套餐”后的最小生成树
int ans = 0;
for(int i = 1; i <= l[0]; ++i){
int ii = l[i];
int x = Find(a[ii].u);
int y = Find(a[ii].v);
if(x != y){
p[x] = y;
ans += a[ii].w;
}
}
return ans;
} int main(){
// freopen("int.txt", "r", stdin);
int T; cin >> T;
while(T--){
scanf("%d %d", &n, &m);
for(int i = 0; i < m; ++i){
scanf("%d %d", &c[0][i], &c[1][i]);
for(int j = 0; j < c[0][i]; ++j)
scanf("%d", &q[i][j]);
}
for(int i = 0; i < n; ++i)
scanf("%d %d", &x[i], &y[i]); indx = 0;
for(int i = 0; i < n; ++i)//计算权植
for(int j = i+1; j < n; ++j){
a[indx].u = i+1;
a[indx].v = j+1;
a[indx++].w = (x[i]-x[j])*(x[i]-x[j]) + (y[i]-y[j])*(y[i]-y[j]);
} sort(a, a+indx);
for(int i = 0; i <= n; ++i) p[i] = i;
int ans = Kruskal();//计算不买”套餐“时的最小费用 for(int i = 0; i < (1<<m); ++i){//二进制法枚举
int cost = 0;
for(int j = 0; j <= n; ++j) p[j] = j; for(int j = 0; j < m; ++j){
if(i&(1<<j)){
cost += c[1][j];
for(int k = 0; k < c[0][j]-1; ++k){
int xx = Find(q[j][k]);
int yy = Find(q[j][k+1]);
if(xx != yy) p[xx] = yy;
}
}
}
ans = min(ans, cost + Kruskal2());//加上买套餐的费用,更新最小值
} printf("%d\n", ans);
if(T) printf("\n");
}
return 0;
}

UVa 1151 Buy or Build (最小生成树+二进制法暴力求解)的更多相关文章

  1. UVa 1151 Buy or Build【最小生成树】

    题意:给出n个点的坐标,现在需要让这n个点连通,可以直接在点与点之间连边,花费为两点之间欧几里得距离的平方,也可以选购套餐,套餐中所含的点是相互连通的 问最少的花费 首先想kruskal算法中,被加入 ...

  2. UVA 1151 Buy or Build MST(最小生成树)

    题意: 在平面上有n个点,要让所有n个点都连通,所以你要构造一些边来连通他们,连通的费用等于两个端点的欧几里得距离的平方.另外还有q个套餐,可以购买,如果你购买了第i个套餐,该套餐中的所有结点将变得相 ...

  3. UVa 1151 - Buy or Build(最小生成树)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  4. UVA 1151 Buy or Build (最小生成树)

    先求出原图的最小生成树,然后枚举买哪些套餐,把一个套餐内的点相互之间边权为0,直接用并查集缩点.正确性是基于一个贪心, 在做Kruskal算法是,对于没有进入最小生成树的边,排序在它前面的边不会减少. ...

  5. UVA - 1151 Buy or Build (买还是建)(并查集+二进制枚举子集)

    题意:平面上有n个点(1<=n<=1000),你的任务是让所有n个点连通.可以新建边,费用等于两端点欧几里德距离的平方.也可以购买套餐(套餐中的点全部连通).问最小费用. 分析: 1.先将 ...

  6. UVA 1151 Buy or Build (MST最小生成树,kruscal,变形)

    题意: 要使n个点之间能够互通,要使两点直接互通需要耗费它们之间的欧几里得距离的平方大小的花费,这说明每两个点都可以使其互通.接着有q个套餐可以选,一旦选了这些套餐,他们所包含的点自动就连起来了,所需 ...

  7. uva 1151 - Buy or Build poj 2784 Buy or Build(最小生成树)

    最小生成树算法简单 只是增加了一些新的东西,对于需要最小生成树算法 和中 并检查使用的一系列 还有一些更深入的了解. 方法的一些复杂问题 #include<cstdio> #include ...

  8. UVA 1151 买还是建(最小生成树)

    买还是建 紫书P358 [题目链接]买还是建 [题目类型]最小生成树 &题解: 这题真的心累,看了3天,最后照着码还是wa,先放lrj代码,以后再看吧 &代码: // UVa1151 ...

  9. uva 1151最小生成树

    先求一次最小生成树,可以排除n*(n*1)/2-(n-1)条边,每次利用二进制法枚举套餐的选择,套餐中的点直接处理,如果两个套餐有公共点直接合并,他们一定连通,然后枚举第一步最小生成树得到的n-1条边 ...

随机推荐

  1. Windows自带NAT端口映射,命令行CMD操作即可

    由于有需求进行端口映射,又不想装乱七八糟的软件,Windows本身自带的路由远程访问配置太麻烦,还要两块网卡,坑爹啊. 其实Windows本身命令行支持配置端口映射,条件是已经安装了IPV6,启不启用 ...

  2. erlang和ruby互相调用

    erlang调用ruby https://github.com/mojombo/erlectricity ruby调用erlang https://github.com/davebryson/rint ...

  3. 华为5573+联通4G上网SIM+ROS hap ac-RB962UiGS-5HacT2HnT 上网

    华为5573+联通4G上网SIM+ROS hap ac-RB962UiGS-5HacT2HnT 上网 原理其实是这样的,ROS的USB口连接华为5573: 华为5573看成是一个路由器,他的外网网卡走 ...

  4. python logging 重复写日志问题

    用Python的logging模块记录日志时,遇到了重复记录日志的问题,第一条记录写一次,第二条记录写两次,第三条记录写三次...很头疼,这样记日志可不行.网上搜索到了原因与解决方案: 原因:没有移除 ...

  5. Django ORM-01

    What is ORM Django ? ORM概念 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. ...

  6. 好记性不如烂笔头-linux学习笔记1

    好记性不如烂笔头-linux学习笔记1 linux的文件系统有ext2,ext3,ext4,目前主流是ext4 linux主要用于服务器级别的操作系统,安装时需要至少2个分区 一个是交换分区,swap ...

  7. django 短链接改成长连接

    from django.conf import settings from django.core.wsgi import get_wsgi_application from gunicorn.app ...

  8. WPF DatePicker 默认显示当前时间

    两种方法: 1.通过后台赋值: this.datePicker.SelectedDate = DateTime.Now; 2.前台控件的属性直接赋值 xmlns:sys="clr-names ...

  9. leetcode807

    class Solution { public: int maxIncreaseKeepingSkyline(vector<vector<int>>& grid) { ...

  10. 阻止后续事件的发生 onclick 双return 事件绑定(..$).click一个return

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...