BZOJ 1833 【ZJOI2010】 数字计数
题目链接:数字计数
没啥好说的,裸裸的数位\(dp\)。
先枚举当前是算数字\(x\)出现的次数,设\(f_{i,j}\)表示从高位往低位\(dp\),\(dp\)完了前\(i\)位之后\(x\)出现了\(j\)次的方案数。然后再加一维,表示当前这一位能否自由选数(也就是说之前是否是一路选最大值过来的)。转移分情况讨论一下就好了。
注意这种写法还有一点情况,就是算\(0\)出现的次数时需要减去区间内前导\(0\)的个数。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std;
typedef long long llg; llg l,r,f[21][21][2],mi[21];
int a[21],b[21],l1,l2; void divide(llg x,int *s,int &len){
llg y=x; while(y) len++,y/=10;
for(int i=len;i;i--) s[i]=x%10,x/=10;
} llg work(int *s,int n,int x){
f[0][0][1]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++){
f[i][j][0]=f[i-1][j][0]*9;
if(j) f[i][j][0]+=f[i-1][j-1][0];
if(s[i]>x){
f[i][j][0]+=f[i-1][j][1]*(s[i]-1);
if(j) f[i][j][0]+=f[i-1][j-1][1];
}
else f[i][j][0]+=f[i-1][j][1]*s[i];
if(s[i]==x){
if(j) f[i][j][1]=f[i-1][j-1][1];
else f[i][j][1]=0;
}
else f[i][j][1]=f[i-1][j][1];
}
llg now=0;
for(int i=1;i<=n;i++) now+=i*(f[n][i][0]+f[n][i][1]);
if(!x){
mi[0]=1; now-=n;
for(int i=1;i<n;i++) mi[i]=mi[i-1]*10;
for(int i=1;i<n;i++) now-=(mi[i]-mi[i-1])*(n-i);
}
return now;
} int main(){
File("a");
scanf("%lld %lld",&l,&r); l--;
divide(l,a,l1); divide(r,b,l2);
for(int i=0;i<=9;i++){
if(i) printf(" ");
printf("%lld",work(b,l2,i)-work(a,l1,i));
}
return 0;
}
BZOJ 1833 【ZJOI2010】 数字计数的更多相关文章
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- 1833. [ZJOI2010]数字计数【数位DP】
Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文 ...
- BZOJ 1833 count 数字计数
sb数位dp. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...
- 【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
随机推荐
- Android中textView自动识别电话号码,电子邮件,网址(自动加连接)
extends:http://blog.csdn.net/wx_962464/article/details/8471195 其实这个是很简单的,在android中已经为我们实现了,但是我估计很多人都 ...
- sql 将一张表中的数据插入到另一张表
将表T_wz_wz中的部分数据插入到表t_wz_kc: insert into t_wz_kc(wzid,jldwid,kcsl,yfpkcsl,cshwcbz) select wzid,jldwid ...
- ubuntu下完全卸载opencv3.1.0
在ubuntu下删除opencv需要以下步骤: 1.进入opencv的源代码文件夹下的release(这是你在安装opencv时候自己命名的,cmake时候所在的目录) 2.执行以下命令 sudo m ...
- UnicodeEncodeError: 'gbk' codec can't encode character '\xbb' in position 0: illegal multibyte sequence
使用Python写文件的时候,或者将网络数据流写入到本地文件的时候,大部分情况下会遇到:UnicodeEncodeError: 'gbk' codec can't encode character ' ...
- hihoCoder_1449_后缀自动机三·重复旋律6
#1449 : 后缀自动机三·重复旋律6 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为一段数构成的数 ...
- tomcat的配置和优化
tomcat的内存使用配置,最大连接数配置. 如何修改配置呢,在/tomcat的/bin/下面有个脚本文件catailna.sh. 如果 windows 是bat设置tomcat的使用内存,其实就是设 ...
- Oracle性能优化之Oracle里的执行计划
一.执行计划 执行计划是目标SQL在oracle数据库中具体的执行步骤,oracle用来执行目标SQL语句的具体执行步骤的组合被称为执行计划. 二.如何查看oracle数据库的执行计划 oracle数 ...
- 【elasticsearch 依赖 urllib3 请问 是否 urllib3和阿里es、oss的对接出现异常】
During handling of the above exception, another exception occurred: Traceback (most recent call last ...
- 设计模式之——Composite模式
composite模式又叫做组合模式/复合模式. 它是一种能够使容器与内容具有一致性,创造出递归结构的模式. 示例程序是列出文件夹以及其内部文件与文件夹一览的功能: 可以由示例图看出,有一个电影文件夹 ...
- 洛谷 P2602 [ZJOI2010]数字计数
洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...