BZOJ 1833 【ZJOI2010】 数字计数
题目链接:数字计数
没啥好说的,裸裸的数位\(dp\)。
先枚举当前是算数字\(x\)出现的次数,设\(f_{i,j}\)表示从高位往低位\(dp\),\(dp\)完了前\(i\)位之后\(x\)出现了\(j\)次的方案数。然后再加一维,表示当前这一位能否自由选数(也就是说之前是否是一路选最大值过来的)。转移分情况讨论一下就好了。
注意这种写法还有一点情况,就是算\(0\)出现的次数时需要减去区间内前导\(0\)的个数。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout) using namespace std;
typedef long long llg; llg l,r,f[21][21][2],mi[21];
int a[21],b[21],l1,l2; void divide(llg x,int *s,int &len){
llg y=x; while(y) len++,y/=10;
for(int i=len;i;i--) s[i]=x%10,x/=10;
} llg work(int *s,int n,int x){
f[0][0][1]=1;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++){
f[i][j][0]=f[i-1][j][0]*9;
if(j) f[i][j][0]+=f[i-1][j-1][0];
if(s[i]>x){
f[i][j][0]+=f[i-1][j][1]*(s[i]-1);
if(j) f[i][j][0]+=f[i-1][j-1][1];
}
else f[i][j][0]+=f[i-1][j][1]*s[i];
if(s[i]==x){
if(j) f[i][j][1]=f[i-1][j-1][1];
else f[i][j][1]=0;
}
else f[i][j][1]=f[i-1][j][1];
}
llg now=0;
for(int i=1;i<=n;i++) now+=i*(f[n][i][0]+f[n][i][1]);
if(!x){
mi[0]=1; now-=n;
for(int i=1;i<n;i++) mi[i]=mi[i-1]*10;
for(int i=1;i<n;i++) now-=(mi[i]-mi[i-1])*(n-i);
}
return now;
} int main(){
File("a");
scanf("%lld %lld",&l,&r); l--;
divide(l,a,l1); divide(r,b,l2);
for(int i=0;i<=9;i++){
if(i) printf(" ");
printf("%lld",work(b,l2,i)-work(a,l1,i));
}
return 0;
}
BZOJ 1833 【ZJOI2010】 数字计数的更多相关文章
- UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)
题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...
- 1833. [ZJOI2010]数字计数【数位DP】
Description 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. Input 输入文件中仅包含一行两个整数a.b,含义如上所述. Output 输出文 ...
- BZOJ 1833 count 数字计数
sb数位dp. #include<iostream> #include<cstdio> #include<cstring> #include<algorith ...
- 【洛谷】2602: [ZJOI2010]数字计数【数位DP】
P2602 [ZJOI2010]数字计数 题目描述 给定两个正整数a和b,求在[a,b]中的所有整数中,每个数码(digit)各出现了多少次. 输入输出格式 输入格式: 输入文件中仅包含一行两个整数a ...
- P2602 [ZJOI2010]数字计数(递推)
P2602 [ZJOI2010]数字计数 思路: 首先考虑含有前导0的情况,可以发现在相同的\(i\)位数中,每个数的出现次数都是相等的.所以我们可以设\(f(i)\)为\(i\)位数每个数的出现次数 ...
- P2602 [ZJOI2010]数字计数&P1239 计数器&P4999 烦人的数学作业
P2602 [ZJOI2010]数字计数 题解 DFS 恶心的数位DP 对于这道题,我们可以一个数字一个数字的求 也就是分别统计区间 [ L , R ] 内部数字 i 出现的次数 (0<=i&l ...
- 数位dp详解&&LG P2602 [ZJOI2010]数字计数
数位dp,适用于解决一类求x~y之间有多少个符合要求的数或者其他. 例题 题目描述 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除 ...
- 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP
题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...
- BZOJ 1833: [ZJOI2010]count 数字计数( dp )
dp(i, j, k)表示共i位, 最高位是j, 数字k出现次数. 预处理出来. 差分答案, 对于0~x的答案, 从低位到高位进行讨论 -------------------------------- ...
- [BZOJ 1833] [ZJOI2010] count 数字计数 【数位DP】
题目链接:BZOJ - 1833 题目分析 数位DP .. 用 f[i][j][k] 表示第 i 位是 j 的 i 位数共有多少个数码 k . 然后差分询问...Get()中注意一下,如果固定了第 i ...
随机推荐
- 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树
[BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...
- Think PHP递归重新排序无限极子分类数组(递归无限极分类)
Think PHP递归重新排序无限极子分类数组 // 递归重新排序无限极子分类数组 function recursive($array,$pid=0,$level=0){ $arr = array() ...
- mongodb拆库分表脚本
脚本功能: 1. 将指定的报告文件按照指定的字段.切库切表策略切分 2. 将切分后的文件并发导入到对应的Mongodb中 3. 生成日志文件和done标识文件 使用手册: -h 打印帮助信息,并 ...
- 云笔记类APP推荐
一.思绪收集类 Google Keep - 记事和清单 - Google Play 上的应用 注:谷歌 Keep 是最方便的收集思绪 APP 了.卡片视图,反应迅速,流畅,UI 漂亮,功能齐全,唯一不 ...
- Pandas使用to_csv保存中文数据用Excel打开是乱码
关于这个问题还是困扰了很久,我生成了一些样本数据,打算保存到csv文件,之后用pandas的命令: # data是DataFrame的格式 data.to_csv('./data/myfile.csv ...
- 利用Python进行端口扫描
利用Python进行端口扫描 - Dahlhin - 博客园 https://www.cnblogs.com/dachenzi/p/8676104.html Python实现对一个网络段扫描及端口扫描 ...
- 棋盘游戏---hdu1281(最大匹配)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1281 题目大意:就是车和车之间不能发生攻击.还有一部分位置不可以放置棋子. 解题思路:一行一列 ...
- django的framework优化
1.优化framework的性能,解决restapi调用慢的问题 ①预加载,关联查询时做缓存,序列化前简单调用setup_eager_loading ,这个需要确定sql查询调用情况(根据数据库结构确 ...
- MySQL多个相同结构的表查询并把结果合并放在一起的语句(union all)
union all select *,'1' as category from table1001 where price > 10 union all select *,'2' as cate ...
- PHP 自动加载的简单实现(推荐)
基于psr的规范,使用命名空间和spl_autoload_register()来实现自动加载 文件结构: |--Api |--Account.php |--User.php |--Service |- ...