原题

传送门

有C个奶牛去晒太阳 (1 <=C <= 2500),每个奶牛各自能够忍受的阳光强度有一个最小值和一个最大值(minSPFi and maxSPFi),太大就晒伤了,太小奶牛没感觉。
而刚开始的阳光的强度非常大,奶牛都承受不住,然后奶牛就得涂抹防晒霜,防晒霜的作用是让阳光照在身上的阳光强度固定为某个值。
那么为了不让奶牛烫伤,又不会没有效果。
给出了L种防晒霜。每种的数量和固定的阳光强度(coveri and SPFi)也给出来了
每个奶牛只能抹一瓶防晒霜,最后问能够享受晒太阳的奶牛有几个。

思路

声明

minSPFi : 奶牛忍受的阳光强度最小值
maxSPFi : 奶牛忍受的阳光强度最大值
coveri : 防晒霜数量
SPFi : 防晒霜阳光强度

初始的思路(38 pts)

这是一道贪心题,但我开始时还是想错了。

我先将每头牛按照最小忍受阳光强度从小到大排序,防晒霜按照强度从小到大排序。

然后开始枚举,对于第 \(i\) 个奶牛 ,假设当前枚举到第 \(l\) 个 防晒霜 , 当其 \(SPFi < minSPFi\) , \(l++\) ,直到满足 \(SPFi \ge minSPFi\) ,而当 \(SPFi > maxSPFi\) , 则 continue ,最后判断一下防晒霜剩余个数即可判断答案

初始代码(38 pts)

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = 2510;
int C,L,ans,l = 0; struct cow{//奶牛
int l,r;
bool operator < (const cow &b) const{
if(l == b.l) return r < b.r;
return l < b.l;
}
}a[MAXN]; struct sunscreen{//防晒霜
int SP,num;
bool operator < (const sunscreen &b) const{
return SP < b.SP;
}
}lotion[MAXN]; int main (){
scanf("%d %d",&C,&L);
for(int i = 0 ;i < C;i++) scanf("%d %d",&a[i].l,&a[i].r);
for(int i = 0 ;i < L;i++) scanf("%d %d",&lotion[i].SP,&lotion[i].num);
sort( a , a+C );
sort( lotion , lotion+L);
for(int i = 0 ;i < C;i++){
if(lotion[l].num == 0) l++; //判断个数
while ( a[i].l > lotion[l].SP && l < L-1) l++;//查找左端点是否符合条件
if( a[i].r < lotion[l].SP) continue;//右端点不符合直接跳过
lotion[l].num--;
ans++;//答案处理
}
printf("%d",ans);
return 0;
}

正解思路

然鹅,这种贪心错了。

举个例子:



按照这种算法,我们会让 1 区间使用 I ,2区间使用 J,3 区间使用 K ,答案为 3。

但是答案为4。

正确解法应该为:

先将每头牛按照最小忍受阳光强度从大到小排序,然后开始枚举,对于第 \(i\) 个奶牛 ,我们要找到它能用的防晒霜里面SPFi最大的,然后计算答案。

关于正确性

SPFi更小的显然其他没枚举到的牛很可能会被用到,于是我们拿掉SPFi最大的,具体可以见上面的图。

代码

#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; const int MAXN = 2510;
int C,L,ans; struct cow{
int l,r;
bool operator < (const cow &b) const{
return l > b.l;
}
}a[MAXN]; struct sunscreen{
int SP,num;
}lotion[MAXN]; int main (){
scanf("%d %d",&C,&L);
for(int i = 0 ;i < C;i++) scanf("%d %d",&a[i].l,&a[i].r);
for(int i = 0 ;i < L;i++) scanf("%d %d",&lotion[i].SP,&lotion[i].num);
sort( a , a+C );
for(int i = 0 ;i < C;i++){
int l = -1,choose = -1;
for(int j = 0;j < L;j++)//暴力枚举
if ( lotion[j].num > 0 && lotion[j].SP >= a[i].l && lotion[j].SP <= a[i].r)
if(lotion[j].SP > choose){
choose = lotion[j].SP;
l = j;
}
if( l != -1 ){
ans++;
lotion[l].num--;
}//答案处理
}
printf("%d",ans);
return 0;
}

题解 洛谷 P2287 [USACO07NOV]Sunscreen G的更多相关文章

  1. 【题解】洛谷P3119 Grass Cownoisseur G

    题面:洛谷P3119 Grass Cownoisseur G 本人最近在熟悉Tarjan的题,刷了几道蓝题后,我飘了 趾高气扬地点开这道紫题,我一瞅: 哎呦!这不是分层图吗? 突然就更飘了~~~ 用时 ...

  2. BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】

    题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...

  3. 题解-洛谷P4229 某位歌姬的故事

    题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...

  4. 题解-洛谷P4724 【模板】三维凸包

    洛谷P4724 [模板]三维凸包 给出空间中 \(n\) 个点 \(p_i\),求凸包表面积. 数据范围:\(1\le n\le 2000\). 这篇题解因为是世界上最逊的人写的,所以也会有求凸包体积 ...

  5. 题解-洛谷P4859 已经没有什么好害怕的了

    洛谷P4859 已经没有什么好害怕的了 给定 \(n\) 和 \(k\),\(n\) 个糖果能量 \(a_i\) 和 \(n\) 个药片能量 \(b_i\),每个 \(a_i\) 和 \(b_i\) ...

  6. 洛谷 [USACO17OPEN]Bovine Genomics G奶牛基因组(金) ———— 1道骗人的二分+trie树(其实是差分算法)

    题目 :Bovine Genomics G奶牛基因组 传送门: 洛谷P3667 题目描述 Farmer John owns NN cows with spots and NN cows without ...

  7. 题解 洛谷P5018【对称二叉树】(noip2018T4)

    \(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...

  8. 题解 洛谷 P3396 【哈希冲突】(根号分治)

    根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...

  9. 题解-洛谷P6788 「EZEC-3」四月樱花

    题面 洛谷P6788 「EZEC-3」四月樱花 给定 \(n,p\),求: \[ans=\left(\prod_{x=1}^n\prod_{y|x}\frac{y^{d(y)}}{\prod_{z|y ...

随机推荐

  1. Jenkins自动化测试脚本的构建

    [准备环境] 自动化测试框架脚本 Linux下的Python环境    https://www.cnblogs.com/xinhua19/p/12836522.html [思路] 测试顺序是,测试通过 ...

  2. Java工程中各种带有O的对象分类笔记

    在Java工程里面,我们总会碰到各种不同的带有O的对象, 对于一个小白来说,经常会混淆这些对象的使用场景,所以在这里mark一下,让自己的代码更加规范,但这个也是Java被诟病的地方,不同的业务需要给 ...

  3. Linux Systemd 详细介绍: Unit、Unit File、Systemctl、Target

    Systemd 简介 CentOS 7 使用 Systemd 替换了SysV Ubuntu 从 15.04 开始使用 Systemd Systemd 是 Linux 系统工具,用来启动守护进程,已成为 ...

  4. 【论文笔记】Pyramidal Convolution: Rethinking Convolutional Neural Networks for Visual Recognition

    地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经 ...

  5. redis基础二----操作hash

    上面usr就是hash的名字,usr这个hash中存储了key 为id.name和age的值 一个hash相当于一个数据对象,里面可以存储key为id name age的值 2.批量插入一个hash数 ...

  6. curl模拟调用接口

    curl模拟调用接口 1. get请求 curl -i -X GET http://url/bind/agentOnWork/v2?Sig=******* 2. post请求(带头信息以及参数) cu ...

  7. Python3-paramiko模块-基于SSH的远程连接模块

    Python3中的paramiko模块,基于SSH用于连接远程服务器并执行相关操作 http://docs.paramiko.org/en/2.1/ SSHClient 用于连接远程服务器并执行基本命 ...

  8. win10提示“无法设置移动热点 请打开WLAN”的解决方法

    一位用户在使用Win10创意者操作系统过程中,遇到了无法开启移动热点的情况,开关呈灰色状态,而且提示:无法设置移动热点 请打开WLAN,该如何解决呢?该用户表示Wlan一直开着呀,感觉非常奇怪.接下来 ...

  9. 【Spring】原来SpringBoot是这样玩的

    菜瓜:我自己去调Mvc的源码差点没给Spring的逻辑秀死...难受 水稻:那今天咱们看一个简单易用的SpringBoot吧 菜瓜:可以,这个我熟悉 水稻:熟悉? 菜瓜:当我没说,请开始你的表演 水稻 ...

  10. JavaScript基础初始时期分支(018)

    Init-Time Branching初始时期分支是一种用做优化的模式.如果某些条件在程序启动后就不再改变,那么我们就只需要在初始时期检查一次就可以了,而不是在每次 需要用到这些条件的时候都检查一次. ...