简介

奇异值是矩阵中的一个非常重要的概念,一般是通过奇异值分解的方法来得到的,奇异值分解是线性代数和矩阵论中一种重要的矩阵分解法,在统计学和信号处理中非常的重要。

在了解奇异值之前,让我们先来看看特征值的概念。

相似矩阵

在线性代数中,相似矩阵是指存在相似关系的矩阵。设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P-1AP=B,则称矩阵A与B相似,记为A~B。

对角矩阵

对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。

可对角化矩阵

可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵 A 相似于对角矩阵,也就是说,如果存在一个可逆矩阵 P 使得 P −1AP 是对角矩阵,则它就被称为可对角化的。

特征值

设A为n阶矩阵,若存在常数λ及n维非零向量x,使得Ax=λx,则称λ是矩阵A的特征值,x是A属于特征值λ的特征向量。

一个矩阵的一组特征向量是一组正交向量。

即特征向量被施以线性变换 A 只会使向量伸长或缩短而其方向不被改变。

一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。

特征分解

特征分解(Eigendecomposition),又称谱分解(Spectral decomposition)是将矩阵分解为由其特征值和特征向量表示的矩阵之积的方法。需要注意只有对可对角化矩阵才可以施以特征分解。

A 是一个 N×N 的方阵,且有 N 个线性无关的特征向量 qi(i=1,…,N)。这样, A 可以被分解为: A= QΛQ-1

其中 Q 是N×N方阵,且其第 i列为 A 的特征向量 。如果A的所有特征向量用x1,x2 … xm来表示的话,那么Q可以表示为:\(\left[x_1,x_2,…,x_m\right]\), 其中x是n维非零向量。

Λ 是对角矩阵,其对角线上的元素为对应的特征值,也即Λiii。 也就是\(\left[\begin{matrix}λ_1 … 0\\… … …\\0 … λ_m \end{matrix}\right]\)

这里需要注意只有可对角化矩阵才可以作特征分解。比如 \(\left[\begin{matrix}11\\01 \end{matrix}\right]\)不能被对角化,也就不能特征分解。

因为 A= QΛQ-1 ,可以看做A被分解为三个矩阵,也就是三个映射。

假如现在有一个向量x,我们可以得出下面的结论:

\(Ax=QΛQ^{-1}x\)

Q是正交矩阵,正交阵的逆矩阵等于其转置,所以\(Q^{-1}\) = \(Q^T\). \(Q^T\)对x的变换是正交变换,它将x用新的坐标系来表示,这个坐标系就是A的所有正交的特征向量构成的坐标系。比如将x用A的所有特征向量表示为:

\(x=a_1x_1+a_2x_2+…+a_mx_m\)

则通过第一个变换就可以把x表示为\([a_1 a_2 ... a_m]^T\)。

\(QΛQ^{-1}x=QΛ\left[\begin{matrix}x_1^T\\x_2^T\\…\\…\\x_m^T \end{matrix}\right](a_1x_1+a_2x_2+a_3x_3+…+a_mx_m)=QΛ\left[\begin{matrix}a_1\\a_2\\…\\a_m \end{matrix}\right]\)

然后,在新的坐标系表示下,由中间那个对角矩阵对新的向量坐标换,其结果就是将向量往各个轴方向拉伸或压缩:

\(QΛ\left[\begin{matrix}a_1\\a_2\\…\\a_m \end{matrix}\right]=Q\left[\begin{matrix}λ_1 … 0\\… … …\\0 … λ_m \end{matrix}\right]\left[\begin{matrix}a_1\\a_2\\…\\a_m \end{matrix}\right]=Q\left[\begin{matrix}λ_1a_1\\λ_2a_2\\…\\λ_ma_m \end{matrix}\right]\)

​ 如果A不是满秩的话,那么就是说对角阵的对角线上元素存在0,这时候就会导致维度退化,这样就会使映射后的向量落入m维空间的子空间中。

最后一个变换就是Q对拉伸或压缩后的向量做变换,由于Q和\(Q^{-1}\)是互为逆矩阵,所以Q变换是\(Q^{-1}\)变换的逆变换。

特征值的几何意义

一个矩阵乘以一个列向量相当于矩阵的列向量的线性组合。一个行向量乘以矩阵,相当于矩阵的行向量的线性组合。

所以向量乘以矩阵之后,相当于将这个向量进行了几何变换。

之前讲了 Λ 是对角矩阵,其对角线上的元素为对应的特征值,也即Λiii。 也就是\(\left[\begin{matrix}λ_1 … 0\\… … …\\0 … λ_m \end{matrix}\right]\)

这些特征值表示的是对向量做线性变换时候,各个变换方向的变换幅度。

奇异值 Singular value

假如A是m * n阶矩阵,q=min(m,n),A*A的q个非负特征值的算术平方根叫作A的奇异值。

奇异值分解SVD

特征值分解可以方便的提取矩阵的特征,但是前提是这个矩阵是一个方阵。如果是非方阵的情况下,就需要用到奇异值分解了。先看下奇异值分解的定义:

\(A=UΣV^T\)

其中A是目标要分解的m * n的矩阵,U是一个 n * n的方阵,Σ 是一个n * m 的矩阵,其非对角线上的元素都是0。\(V^T\)是V的转置,也是一个n * n的矩阵。

奇异值跟特征值类似,在矩阵Σ中也是从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵。r是一个远小于m、n的数,这样就可以进行压缩矩阵。

通过奇异值分解,我们可以通过更加少量的数据来近似替代原矩阵。

本文已收录于 www.flydean.com

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

AI数学基础之:奇异值和奇异值分解的更多相关文章

  1. 图解AI数学基础 | 线性代数与矩阵论

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  2. 图解AI数学基础 | 概率与统计

    作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-det ...

  3. AI 数学基础 张量 范数

    1.张量 几何代数中定义的张量是基于向量和矩阵的推广,通俗一点理解的话,我们可以将标量视为零阶张量,矢量视为一阶张量,那么矩阵就是二阶张量. 例如,可以将任意一张彩色图片表示成一个三阶张量,三个维度分 ...

  4. AI数学基础:符号

    1.sigma 表达式 ∑ 是一个求和符号,英语名称:Sigma,汉语名称:西格玛(大写Σ,小写σ) 第十八个希腊字母.在希腊语中,如果一个单字的最末一个字母是小写sigma,要把该字母写成 ς ,此 ...

  5. AI 数学基础:概率分布,幂,对数

    1.概率分布  参考: https://blog.csdn.net/ZZh1301051836/article/details/89371412 p 2.幂次的意义 物理理解:幂次描述的是指数型的变化 ...

  6. AI 数学基础 : 熵

    什么是熵(entropy)? 1.1 熵的引入 事实上,熵的英文原文为entropy,最初由德国物理学家鲁道夫·克劳修斯提出,其表达式为: 它表示一个系系统在不受外部干扰时,其内部最稳定的状态.后来一 ...

  7. AI数学基础之:概率和上帝视角

    目录 简介 蒙题霍尔问题 上帝视角解决概率问题 上帝视角的好处 简介 天要下雨,娘要嫁人.虽然我们不能控制未来的走向,但是可以一定程度上预测为来事情发生的可能性.而这种可能性就叫做概率.什么是概率呢? ...

  8. AI数学基础之:确定图灵机和非确定图灵机

    目录 简介 图灵机 图灵机的缺点 等效图灵机 确定图灵机 非确定图灵机 简介 图灵机是由艾伦·麦席森·图灵在1936年描述的一种抽象机器,它是人们使用纸笔进行数学运算的过程的抽象,它肯定了计算机实现的 ...

  9. AI数学基础之:P、NP、NPC问题

    目录 简介 P问题 NP问题 NP问题的例子 有些NP问题很难解决 NPC问题 NP-hard P和NP问题 简介 我们在做组合优化的时候需要去解决各种问题,根据问题的复杂度不同可以分为P.NP.NP ...

随机推荐

  1. Java 复习整理day07

    package com.it.demo05_innerclass; /* 案例: 演示内部类入门. 概述: 所谓的内部类指的是类里边还有一个类, 里边那个类叫: 内部类, 外边那个类, 叫外部类. 分 ...

  2. 如何使用命令将文件夹中的文件名(包括路径)写入到txt文件中

    在cmd中使用 cd /d 路径,进入当前文件夹中 使用 dir /s /b > 0.txt 如图:

  3. hdu4686 Arc of Dream

    Time Limit: 2000/2000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Total Submission ...

  4. Codeforces Round #687 (Div. 2, based on Technocup 2021 Elimination Round 2) D. XOR-gun (二进制,异或,前缀和)

    题意:给你一组非递减的数,你可以对两个连续的数进行异或,使其合并为一个数,问最少操作多少次使得这组数不满足非递减. 题解:首先,给出的这组数是非递减的,我们考虑二进制,对于三个连续的非递减的最高位相同 ...

  5. UVA 796 - Critical Links 无向图字典序输出桥

    题目:传送门 题意:给你一个无向图,你需要找出里面的桥,并把所有桥按字典序输出 这一道题就是用无向图求桥的模板就可以了. 我一直错就是因为我在输入路径的时候少考虑一点 错误代码+原因: 1 #incl ...

  6. Chapter Zero 0.2.2 内存

    目录 内存 内存的多通道设计 DRAM 和 SRAM 只读存储器(ROM) RAM.ROM以及硬盘的区别(转自百度) 内存 CPU的数据都是来自主存储器(main memory),个人计算机的主寄存器 ...

  7. C++中关于输入cin的一些总结

    (1)cin 在理解cin功能时,不得不提标准输入缓冲区.当我们从键盘输入字符串的时候需要敲一下回车键才能够将这个字符串送入到缓冲区中,那么敲入的这个回车键(\r)会被转换为一个换行符\n,这个换行符 ...

  8. 51nod1459 带权最短路

    1459 迷宫游戏 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 你来到一个迷宫前.该迷宫由若干个房间组成,每个房间都有一个得分,第一次进入这个房间,你就可以得到这个分 ...

  9. webpack OSS All In One

    webpack OSS All In One 阿里云 OSS 对象存储(Object Storage Service,简称OSS),是阿里云对外提供的海量.安全和高可靠的云存储服务 https://c ...

  10. SwiftUI & Compose View

    SwiftUI & Compose View OK // // ContentView.swift // Landmarks // // Created by 夏凌晨 on 2020/10/2 ...