题目

City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.

输入格式

There are multiple test cases.

For each test case:

The first line contains two integers \(N\) and \(M\), representing the number of the crossings and roads.

The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers \(X_i\) and \(Y_i\), representing that road i connects crossing \(X_i\) and \(Y_i\) (\(X_i≠Y_i\)).

The following line contains a single integer Q, representing the number of RTQs.

Then Q lines follows, each describing a RTQ by two integers \(S\) and \(T(S≠T)\) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.

The input ends with a line of “0 0”.

Please note that: \(0< N \le 10000\), \(0 < M \le 100000\), \(0 < Q \le 10000\), \(0 < X_i\),\(Y_i \le N\), \(0 < S,T \le M\)

输出格式

For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.

样例输入

5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0

样例输出

0
1

题解

题目大意:

输出两条边之间必须经过的点

这道题其实没有什么思维难度, 显然先缩点, 求lca即可.

主要就是调起来很麻烦, 而且起点和终点不是点是边.

tarjon缩点, 倍增求lca

代码

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e4 + 5, M = 1e5 + 5, Lg = 25;
int n, m, qn, tot, head[2][N << 1], top, sta[N], dfsc, dfn[N], low[N], dccCnt, root, bel[N], eb[M], fa[N << 1][Lg], dep[N << 1], id[N];
bool cut[N], vis[N << 1];
vector<int> dcc[N];
struct Edge { int to, nxt, id; } edges[M << 2];
inline void add(int type, int from, int to, int eid) {
edges[++tot] = (Edge){to, head[type][from], eid}, head[type][from] = tot;
}
void tarjan(int x) {
dfn[x] = low[x] = ++dfsc;
sta[++top] = x;
if (x == root && head[0][x] == 0)
return dcc[++dccCnt].push_back(x);
int son = 0;
for (int i = head[0][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
if (dfn[x] <= low[y]) {
son++;
if (x != root || son > 1) cut[x] = 1;
dccCnt++;
while(1){
int z = sta[top--];
dcc[dccCnt].push_back(z);
if (z == y) break;
}
dcc[dccCnt].push_back(x);
}
} else low[x] = min(low[x], dfn[y]);
}
}
void dfs(int x, int fat, int depth) {
vis[x] = 1, fa[x][0] = fat, dep[x] = depth;
for (int i = 1; i <= 15; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (int i = head[1][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (vis[y]) continue;
dfs(y, x, depth + 1);
}
}
int lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (int i = 15; i >= 0; i--)
if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
if (x == y) return x;
for (int i = 15; i >= 0; i--)
if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int main() {
while (1) {
scanf("%d%d", &n, &m);
if (n == 0 && m == 0) break;
tot = dfsc = dccCnt = top = 0;
memset(head, 0, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(cut, 0, sizeof(cut));
for (int x, y, i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
add(0, x, y, i), add(0, y, x, i);
}
for (int i = 1; i <= n; i++) dcc[i].clear();
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(root = i);
int now = dccCnt;
for (int i = 1; i <= n; i++)
if (cut[i]) id[i] = ++now;
for (int i = 1; i <= dccCnt; i++) {
for (int j = 0; j < dcc[i].size(); j++) {
int x = dcc[i][j];
if (cut[x]) add(1, id[x], i, 0), add(1, i, id[x], 0);
bel[x] = i;
}
for (int j = 0; j < dcc[i].size(); j++)
for (int k = head[0][dcc[i][j]]; k; k = edges[k].nxt) if (bel[edges[k].to] == i) eb[edges[k].id] = i;
}
memset(dep, 0, sizeof(dep));
memset(fa, 0, sizeof(fa));
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= now; i++) if (!vis[i]) dfs(i, 0, 1);
scanf("%d", &qn);
for (int x, y; qn--;) {
scanf("%d%d", &x, &y);
x = eb[x], y = eb[y];
if (x == y) puts("0");
else printf("%d\n", (dep[x] + dep[y] - 2 * dep[lca(x, y)]) / 2);
}
}
return 0;
}

HDU3686 Traffic Real Time Query System 题解的更多相关文章

  1. UVALive-4839 HDU-3686 Traffic Real Time Query System 题解

    题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...

  2. CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System

    逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...

  3. HDU3686 Traffic Real Time Query System

    P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...

  4. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  5. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  6. HDU3686 Traffic Real Time Query【缩点+lca】

    题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...

  7. Traffic Real Time Query System 圆方树+LCA

    题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...

  8. Traffic Real Time Query System,题解

    题目链接 题意: 问从一条边到另一条边的必经点. 分析: 首先,问必经点,当然是要点双缩点(圆方树)啦,关键是把边映射到哪一点上,其实直接放在某联通分量的方点上就行,但是这个点并不好找,所以我们考虑一 ...

  9. HDU Traffic Real Time Query System

    题目大意是:对于(n, m)的图,给定边a, b查询从a到b要经过的割点的最少数目. 先tarjan算法求双连通然后缩点,即对于每个割点将周围的每个双连通看成一个点与之相连.然后求解LCA即可,距离d ...

随机推荐

  1. 读取Excel文件,抛出类似Cleaning up unclosed ZipFile for archive D:\project\myTest\autoAppUI\excelMode\用例模板2.xlsx 错误解决

    读excel用例的时候总报这个错误,一直不知道什么原因~~~~~~~~~~ 今天突然顿悟了,原来是读excel的时候用到了文件流,我在读文件的方法里加了流关闭的操作,完美解决报错

  2. BFART算法

    参考:https://zhuanlan.zhihu.com/p/31498036 https://www.jianshu.com/p/83bb10ad1d32

  3. mysql基础之-mysql锁和事务(七)

    0x01 MySQL锁: 执行操作时施加锁的模式 读锁:用户在读的时候施加的锁,为防止别人修改,但是用户可以读,还被称为共享锁 不会对其他用户进行阻塞 理解: ----->(这里的不阻塞,是可以 ...

  4. 曹工说JDK源码(4)--抄了一小段ConcurrentHashMap的代码,我解决了部分场景下的Redis缓存雪崩问题

    曹工说JDK源码(1)--ConcurrentHashMap,扩容前大家同在一个哈希桶,为啥扩容后,你去新数组的高位,我只能去低位? 曹工说JDK源码(2)--ConcurrentHashMap的多线 ...

  5. Spring新注解

    @Configuration作用:指定当前类为一个配置类@ComponentScan作用:用于通过注释指定Spring在创建容器时要扫描的包           当配置类作为AnnotationCon ...

  6. Install Centos7 on VirtualBox in mac

    Step 1:准备虚拟机及镜像 下载合适的Virtual Box版本 官方下载链接:https://www.virtualbox.org/wiki/Downloads 这里选择的版本是:https:/ ...

  7. TensorFlow从0到1之TensorFlow实现反向传播算法(21)

    反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...

  8. (五)POI-设置单元格的对齐方式

    原文链接:https://blog.csdn.net/class157/article/details/92817149 package com.java.poi; import org.apache ...

  9. 关于mybatis使用小于号大于号出错的解决方案

    原文链接:https://blog.csdn.net/weixin_38061311/article/details/99943807 mybatis 使用的xml的映射文件, 所以里面的标签都是在& ...

  10. 网页中为什么常用AT替换@(repost from https://zhidao.baidu.com/question/122291.html)

    经常在个人主页上看到别人的邮箱地址中@被AT符号替代,很是迷惑,这样替代有什么好处呢?还是说html原有的原因使界面中不能出现@,查阅资料后解答如下: 写成AT [at],是为了防止被一些邮件扫描器搜 ...