题目

City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, the mayor plans to build a RTQS (Real Time Query System) to monitor all traffic situations. City C is made up of N crossings and M roads, and each road connects two crossings. All roads are bidirectional. One of the important tasks of RTQS is to answer some queries about route-choice problem. Specifically, the task is to find the crossings which a driver MUST pass when he is driving from one given road to another given road.

输入格式

There are multiple test cases.

For each test case:

The first line contains two integers \(N\) and \(M\), representing the number of the crossings and roads.

The next M lines describe the roads. In those M lines, the i th line (i starts from 1)contains two integers \(X_i\) and \(Y_i\), representing that road i connects crossing \(X_i\) and \(Y_i\) (\(X_i≠Y_i\)).

The following line contains a single integer Q, representing the number of RTQs.

Then Q lines follows, each describing a RTQ by two integers \(S\) and \(T(S≠T)\) meaning that a driver is now driving on the roads and he wants to reach roadt . It will be always at least one way from roads to roadt.

The input ends with a line of “0 0”.

Please note that: \(0< N \le 10000\), \(0 < M \le 100000\), \(0 < Q \le 10000\), \(0 < X_i\),\(Y_i \le N\), \(0 < S,T \le M\)

输出格式

For each RTQ prints a line containing a single integer representing the number of crossings which the driver MUST pass.

样例输入

5 6
1 2
1 3
2 3
3 4
4 5
3 5
2
2 3
2 4
0 0

样例输出

0
1

题解

题目大意:

输出两条边之间必须经过的点

这道题其实没有什么思维难度, 显然先缩点, 求lca即可.

主要就是调起来很麻烦, 而且起点和终点不是点是边.

tarjon缩点, 倍增求lca

代码

#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
const int N = 1e4 + 5, M = 1e5 + 5, Lg = 25;
int n, m, qn, tot, head[2][N << 1], top, sta[N], dfsc, dfn[N], low[N], dccCnt, root, bel[N], eb[M], fa[N << 1][Lg], dep[N << 1], id[N];
bool cut[N], vis[N << 1];
vector<int> dcc[N];
struct Edge { int to, nxt, id; } edges[M << 2];
inline void add(int type, int from, int to, int eid) {
edges[++tot] = (Edge){to, head[type][from], eid}, head[type][from] = tot;
}
void tarjan(int x) {
dfn[x] = low[x] = ++dfsc;
sta[++top] = x;
if (x == root && head[0][x] == 0)
return dcc[++dccCnt].push_back(x);
int son = 0;
for (int i = head[0][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (!dfn[y]) {
tarjan(y);
low[x] = min(low[x], low[y]);
if (dfn[x] <= low[y]) {
son++;
if (x != root || son > 1) cut[x] = 1;
dccCnt++;
while(1){
int z = sta[top--];
dcc[dccCnt].push_back(z);
if (z == y) break;
}
dcc[dccCnt].push_back(x);
}
} else low[x] = min(low[x], dfn[y]);
}
}
void dfs(int x, int fat, int depth) {
vis[x] = 1, fa[x][0] = fat, dep[x] = depth;
for (int i = 1; i <= 15; i++) fa[x][i] = fa[fa[x][i - 1]][i - 1];
for (int i = head[1][x]; i; i = edges[i].nxt) {
int y = edges[i].to;
if (vis[y]) continue;
dfs(y, x, depth + 1);
}
}
int lca(int x, int y) {
if (dep[x] < dep[y]) swap(x, y);
for (int i = 15; i >= 0; i--)
if (dep[fa[x][i]] >= dep[y]) x = fa[x][i];
if (x == y) return x;
for (int i = 15; i >= 0; i--)
if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i];
return fa[x][0];
}
int main() {
while (1) {
scanf("%d%d", &n, &m);
if (n == 0 && m == 0) break;
tot = dfsc = dccCnt = top = 0;
memset(head, 0, sizeof(head));
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(cut, 0, sizeof(cut));
for (int x, y, i = 1; i <= m; i++) {
scanf("%d%d", &x, &y);
add(0, x, y, i), add(0, y, x, i);
}
for (int i = 1; i <= n; i++) dcc[i].clear();
for (int i = 1; i <= n; i++)
if (!dfn[i]) tarjan(root = i);
int now = dccCnt;
for (int i = 1; i <= n; i++)
if (cut[i]) id[i] = ++now;
for (int i = 1; i <= dccCnt; i++) {
for (int j = 0; j < dcc[i].size(); j++) {
int x = dcc[i][j];
if (cut[x]) add(1, id[x], i, 0), add(1, i, id[x], 0);
bel[x] = i;
}
for (int j = 0; j < dcc[i].size(); j++)
for (int k = head[0][dcc[i][j]]; k; k = edges[k].nxt) if (bel[edges[k].to] == i) eb[edges[k].id] = i;
}
memset(dep, 0, sizeof(dep));
memset(fa, 0, sizeof(fa));
memset(vis, 0, sizeof(vis));
for (int i = 1; i <= now; i++) if (!vis[i]) dfs(i, 0, 1);
scanf("%d", &qn);
for (int x, y; qn--;) {
scanf("%d%d", &x, &y);
x = eb[x], y = eb[y];
if (x == y) puts("0");
else printf("%d\n", (dep[x] + dep[y] - 2 * dep[lca(x, y)]) / 2);
}
}
return 0;
}

HDU3686 Traffic Real Time Query System 题解的更多相关文章

  1. UVALive-4839 HDU-3686 Traffic Real Time Query System 题解

    题目大意: 有一张无向连通图,问从一条边走到另一条边必定要经过的点有几个. 思路: 先用tarjan将双连通分量都并起来,剩下的再将割点独立出来,建成一棵树,之后记录每个点到根有几个割点,再用RMQ求 ...

  2. CH#24C 逃不掉的路 和 HDU3686 Traffic Real Time Query System

    逃不掉的路 CH Round #24 - 三体杯 Round #1 题目描述 现代社会,路是必不可少的.任意两个城镇都有路相连,而且往往不止一条.但有些路连年被各种XXOO,走着很不爽.按理说条条大路 ...

  3. HDU3686 Traffic Real Time Query System

    P.S.此题无代码,只有口胡,因为作者码炸了. 题目大意 给你一个有 \(n\) 个点, \(m\) 条边的无向图,进行 \(q\) 次询问,每次询问两个点 \(u\) \(v\),输出两个点的之间的 ...

  4. HDU 3686 Traffic Real Time Query System (图论)

    HDU 3686 Traffic Real Time Query System 题目大意 给一个N个点M条边的无向图,然后有Q个询问X,Y,问第X边到第Y边必需要经过的点有多少个. solution ...

  5. HDU 3686 Traffic Real Time Query System(双连通分量缩点+LCA)(2010 Asia Hangzhou Regional Contest)

    Problem Description City C is really a nightmare of all drivers for its traffic jams. To solve the t ...

  6. HDU3686 Traffic Real Time Query【缩点+lca】

    题目 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, t ...

  7. Traffic Real Time Query System 圆方树+LCA

    题目描述 City C is really a nightmare of all drivers for its traffic jams. To solve the traffic problem, ...

  8. Traffic Real Time Query System,题解

    题目链接 题意: 问从一条边到另一条边的必经点. 分析: 首先,问必经点,当然是要点双缩点(圆方树)啦,关键是把边映射到哪一点上,其实直接放在某联通分量的方点上就行,但是这个点并不好找,所以我们考虑一 ...

  9. HDU Traffic Real Time Query System

    题目大意是:对于(n, m)的图,给定边a, b查询从a到b要经过的割点的最少数目. 先tarjan算法求双连通然后缩点,即对于每个割点将周围的每个双连通看成一个点与之相连.然后求解LCA即可,距离d ...

随机推荐

  1. PAT 德才论

    宋代史学家司马光在<资治通鉴>中有一段著名的“德才论”:“是故才德全尽谓之圣人,才德兼亡谓之愚人,德胜才谓之君子,才胜德谓之小人.凡取人之术,苟不得圣人,君子而与之,与其得小人,不若得愚人 ...

  2. lambda表达式操作DataTable番外篇

    using System;using System.Collections.Generic;using System.Data;using System.Linq;using System.Text; ...

  3. Tomcat的8080端口被占用无法启动Tomcat怎么办?

    一招解决Tomcat的8080端口被占用 打开tomcat的bin目录在,找到startup.bat,用记事本编辑startup.bat,在第一行加入 set JAVA_HOME=C:\Program ...

  4. 头条面试居然跟我扯了半小时的Semaphore

    一个长头发.穿着清爽的小姐姐,拿着一个崭新的Mac笔记本向我走来,看着来势汹汹,我心想着肯定是技术大佬吧!但是我也是一个才华横溢的人,稳住我们能赢. 面试官:看你简历上有写熟悉并发编程,Semapho ...

  5. DML_Data Modification_UPDATE

    DML_Data Modification_UPDATE写不进去,不能专注了...... /* */ ------------------------------------------------- ...

  6. MSSQL2008下备份好的*.bak--->>>恢复到--->>>MSSQL2014(解决办法)

    MSSQL2008下备份好的*.bak--->>>恢复到--->>>MSSQL2014(解决办法) 在进行CTE训练时(同时也要理解下窗口函数的应用),发现不能继续 ...

  7. (二)HttpClient Post请求

    原文链接:https://blog.csdn.net/justry_deng/article/details/81042379 POST无参: /** * POST---无参测试 * * @date ...

  8. SpringMVC的url-pattern配置及原理剖析

    SpringMVC的url-pattern配置及原理剖析 xml里面配置标签: <!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc./ ...

  9. Beta冲刺--冲刺总结

    这个作业属于哪个课程 软件工程 (福州大学至诚学院 - 计算机工程系) 这个作业要求在哪里 Beta 冲刺 这个作业的目标 Beta冲刺--冲刺总结 作业正文 如下 其他参考文献 ... Beta冲刺 ...

  10. 定时任务Cron

    Linux系统中的定时任务cron,一个很实际很有效很简单的一个工作,在日常的生产环境中,会被广泛使用的一个组件.通过设置时间.执行的脚本等内容,能够让系统自动的执行相关任务,很是方便. cron定时 ...