Poj 3370
题目传送门:https://vjudge.net/problem/POJ-3370
题意:在n个数中找K个数使得他们的和为c的倍数。
题解:抽屉原理,同poj 2356 只不过写法上有所简化。
简化版:


1 //#include<bits/stdc++.h>
2 #include<time.h>
3 #include <set>
4 #include <map>
5 #include <stack>
6 #include <cmath>
7 #include <queue>
8 #include <cstdio>
9 #include <string>
10 #include <vector>
11 #include <cstring>
12 #include <utility>
13 #include <cstring>
14 #include <iostream>
15 #include <algorithm>
16 #include <list>
17 using namespace std;
18 #define eps 1e-10
19 #define PI acos(-1.0)
20 #define lowbit(x) ((x)&(-x))
21 #define zero(x) (((x)>0?(x):-(x))<eps)
22 #define mem(s,n) memset(s,n,sizeof s);
23 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
24 typedef long long ll;
25 typedef unsigned long long ull;
26 const int maxn=1e5+5;
27 const int Inf=0x7f7f7f7f;
28 const ll Mod=999911659;
29 //const int N=3e3+5;
30 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂
31 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模
32 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0
33 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1
34 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); }
35 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
36 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
37 int Abs(int n) {
38 return (n ^ (n >> 31)) - (n >> 31);
39 /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1
40 若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1)
41 需要计算 n 和 -1 的补码,然后进行异或运算,
42 结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */
43 }
44 ll binpow(ll a, ll b,ll c) {
45 ll res = 1;
46 while (b > 0) {
47 if (b & 1) res = res * a%c;
48 a = a * a%c;
49 b >>= 1;
50 }
51 return res%c;
52 }
53 void extend_gcd(ll a,ll b,ll &x,ll &y)
54 {
55 if(b==0) {
56 x=1,y=0;
57 return;
58 }
59 extend_gcd(b,a%b,x,y);
60 ll tmp=x;
61 x=y;
62 y=tmp-(a/b)*y;
63 }
64 ll mod_inverse(ll a,ll m)
65 {
66 ll x,y;
67 extend_gcd(a,m,x,y);
68 return (m+x%m)%m;
69 }
70 ll eulor(ll x)
71 {
72 ll cnt=x;
73 ll ma=sqrt(x);
74 for(int i=2;i<=ma;i++)
75 {
76 if(x%i==0) cnt=cnt/i*(i-1);
77 while(x%i==0) x/=i;
78 }
79 if(x>1) cnt=cnt/x*(x-1);
80 return cnt;
81 }
82 ll c,n,a[maxn],pos[maxn],sum;
83 int main()
84 {
85 while(scanf("%lld%lld",&c,&n),c||n){
86 sum=0;
87 for(int i=0;i<n;i++)
88 {
89 scanf("%lld",&a[i]);
90 pos[i]=-2;
91 }
92 pos[0]=-1;//整除情况也包括了.
93 for(int i=0;i<n;i++)
94 {
95 sum+=a[i];
96 if(pos[sum%c]!=-2)
97 {
98 //cout<<i-pos[sum[i]%c]<<endl;
99 for(int j=pos[sum%c]+1;j<=i;j++)
100 {
101 cout<<j+1;
102 if(i!=j) cout<<" ";
103 }
104 printf("\n");
105 break;
106 }
107 pos[sum%c]=i;
108 }
109 }
110 return 0;
111 }
基础版:


1 #include<time.h>
2 #include <set>
3 #include <map>
4 #include <stack>
5 #include <cmath>
6 #include <queue>
7 #include <cstdio>
8 #include <string>
9 #include <vector>
10 #include <cstring>
11 #include <utility>
12 #include <cstring>
13 #include <iostream>
14 #include <algorithm>
15 #include <list>
16 using namespace std;
17 #define eps 1e-10
18 #define PI acos(-1.0)
19 #define lowbit(x) ((x)&(-x))
20 #define zero(x) (((x)>0?(x):-(x))<eps)
21 #define mem(s,n) memset(s,n,sizeof s);
22 #define ios {ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);}
23 typedef long long ll;
24 typedef unsigned long long ull;
25 const int maxn=1e6+5;
26 const int Inf=0x7f7f7f7f;
27 const ll Mod=999911659;
28 //const int N=3e3+5;
29 bool isPowerOfTwo(int n) { return n > 0 && (n & (n - 1)) == 0; }//判断一个数是不是 2 的正整数次幂
30 int modPowerOfTwo(int x, int mod) { return x & (mod - 1); }//对 2 的非负整数次幂取模
31 int getBit(int a, int b) { return (a >> b) & 1; }// 获取 a 的第 b 位,最低位编号为 0
32 int Max(int a, int b) { return b & ((a - b) >> 31) | a & (~(a - b) >> 31); }// 如果 a>=b,(a-b)>>31 为 0,否则为 -1
33 int Min(int a, int b) { return a & ((a - b) >> 31) | b & (~(a - b) >> 31); }
34 ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
35 ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
36 int Abs(int n) {
37 return (n ^ (n >> 31)) - (n >> 31);
38 /* n>>31 取得 n 的符号,若 n 为正数,n>>31 等于 0,若 n 为负数,n>>31 等于 -1
39 若 n 为正数 n^0=n, 数不变,若 n 为负数有 n^(-1)
40 需要计算 n 和 -1 的补码,然后进行异或运算,
41 结果 n 变号并且为 n 的绝对值减 1,再减去 -1 就是绝对值 */
42 }
43 ll binpow(ll a, ll b,ll c) {
44 ll res = 1;
45 while (b > 0) {
46 if (b & 1) res = res * a%c;
47 a = a * a%c;
48 b >>= 1;
49 }
50 return res%c;
51 }
52 void extend_gcd(ll a,ll b,ll &x,ll &y)
53 {
54 if(b==0) {
55 x=1,y=0;
56 return;
57 }
58 extend_gcd(b,a%b,x,y);
59 ll tmp=x;
60 x=y;
61 y=tmp-(a/b)*y;
62 }
63 ll mod_inverse(ll a,ll m)
64 {
65 ll x,y;
66 extend_gcd(a,m,x,y);
67 return (m+x%m)%m;
68 }
69 ll eulor(ll x)
70 {
71 ll cnt=x;
72 ll ma=sqrt(x);
73 for(int i=2;i<=ma;i++)
74 {
75 if(x%i==0) cnt=cnt/i*(i-1);
76 while(x%i==0) x/=i;
77 }
78 if(x>1) cnt=cnt/x*(x-1);
79 return cnt;
80 }
81 ll c,n,a[maxn],sum[maxn],pos[maxn];
82 int main()
83 {
84 while(scanf("%lld%lld",&c,&n),n||c){
85 mem(pos,0);
86 mem(sum,0);
87 for(int i=1;i<=n;i++)
88 {
89 scanf("%lld",&a[i]);
90 sum[i]=sum[i-1]+a[i];
91 }
92 for(int i=1;i<=n;i++)
93 {
94 if(sum[i]%c==0)
95 {
96 //cout<<i<<endl;
97 for(int j=1;j<=i;j++) cout<<j<<" ";
98 cout<<endl;
99 break;
100 }
101 if(pos[sum[i]%c])
102 {
103 //cout<<i-pos[sum[i]%c]<<endl;
104 for(int j=pos[sum[i]%c]+1;j<=i;j++) cout<<j<<" ";
105 cout<<endl;
106 break;
107 }
108 pos[sum[i]%c]=i;
109 }
110 }
111 return 0;
112 }
Poj 3370的更多相关文章
- POJ 3370. Halloween treats 抽屉原理 / 鸽巢原理
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7644 Accepted: 2798 ...
- [POJ 3370] Halloween treats
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 7143 Accepted: 2641 ...
- POJ 2356 && POJ 3370 鸽巢原理
POJ 2356: 题目大意: 给定n个数,希望在这n个数中找到一些数的和是n的倍数,输出任意一种数的序列,找不到则输出0 这里首先要确定这道题的解是必然存在的 利用一个 sum[i]保存前 i 个数 ...
- POJ 3370 Halloween treats( 鸽巢原理简单题 )
链接:传送门 题意:万圣节到了,有 c 个小朋友向 n 个住户要糖果,根据以往的经验,第i个住户会给他们a[ i ]颗糖果,但是为了和谐起见,小朋友们决定要来的糖果要能平分,所以他们只会选择一部分住户 ...
- poj 3370 Halloween treats(鸽巢原理)
Description Every year there is the same problem at Halloween: Each neighbour is only willing to giv ...
- poj 3370 鸽笼原理知识小结
中学就听说过抽屉原理,可惜一直没机会见识,现在这题有鸽笼原理的结论,但其实知不知道鸽笼原理都可以做 先总结一下鸽笼原理: 有n+1件或n+1件以上的物品要放到n个抽屉中,那么至少有一个抽屉里有两个或两 ...
- 鸽巢原理应用-分糖果 POJ 3370 Halloween treats
基本原理:n+1只鸽子飞回n个鸽笼至少有一个鸽笼含有不少于2只的鸽子. 很简单,应用却也很多,很巧妙,看例题: Description Every year there is the same pro ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Every year there is the same problem at Halloween: Each neighbour is only willing t ...
- POJ 3370 Halloween treats(抽屉原理)
Halloween treats Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6631 Accepted: 2448 ...
随机推荐
- 如何在ASP.NET Core 中使用IHttpClientFactory
利用IHttpClientFactory可以无缝创建HttpClient实例,避免手动管理它们的生命周期. 当使用ASP.Net Core开发应用程序时,可能经常需要通过HttpClient调用Web ...
- hihoCoder Challenge 1
#1034 : 毁灭者问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 在 Warcraft III 之冰封王座中,毁灭者是不死族打三本后期时的一个魔法飞行单位. 毁 ...
- how to enable vue cli auto open the localhost url
how to enable vue cli auto open the localhost URL bad you must click the link by manually, waste of ...
- Web API 设计
Web API 设计 The Design of Web APIs free online ebook https://www.manning.com/books/the-design-of-web- ...
- js 小数转整数,避免精度损失 bug
js 小数转整数,避免精度损失 bug const arr = [ 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01 ]; // ( ...
- cURL all in one
cURL all in one convert http request to curl online https://curlbuilder.com/ https://cdn.xgqfrms.xyz ...
- Nestjs 上传文件到七牛云
$ npm install qiniu import * as url from 'url'; import * as qiniu from 'qiniu'; @Post('upload') @Use ...
- js in depth & prototype & __proto__
js in depth & prototype & proto 实例的 proto 与 父类的 prototype,同时指向 父类的构造函数: https://hackernoon.c ...
- DOMParser & SVG
DOMParser & SVG js parse html to dom https://developer.mozilla.org/zh-CN/docs/Web/API/DOMParser ...
- Flutter: moor_flutter库,简化sqlite操作
入门 video moor_flutter 示例代码仓库 install dependencies: ... moor_flutter: dev_dependencies: ... moor_gene ...