金题大战Vol.0 C、树上的等差数列
金题大战Vol.0 C、树上的等差数列
题目描述
给定一棵包含\(N\)个节点的无根树,节点编号\(1-N\)。其中每个节点都具有一个权值,第\(i\)个节点的权值是\(A_i\)。
小\(Hi\)希望你能找到树上的一条最长路径,满足沿着路径经过的节点的权值序列恰好构成等差数列。
输入格式
第一行包含一个整数\(N\)。
第二行包含\(N\)个整数\(A_1, A_2, ... A_N\)。
以下\(N-1\)行,每行包含两个整数\(U\)和\(V\),代表节点\(U\)和\(V\)之间有一条边相连。
输出格式
最长等差数列路径的长度
样例
样例输入
7
3 2 4 5 6 7 5
1 2
1 3
2 7
3 4
3 5
3 6
样例输出
4
数据范围与提示
对于\(50\%\)的数据,\(1 ≤ N ≤ 1000\)
对于\(100\%\)的数据,\(1 ≤ N ≤ 100000, 0 ≤ Ai ≤ 100000, 1 ≤ U, V ≤ N\)
分析
树形\(DP\)
我们设 \(f[i][j]\) 为以\(i\)作为根节点的子树中公差为\(j\)的路径的最长长度,接下来考虑转移
转移的过程无非是把子树中的状态递归至父亲节点
即 \(f[now][a[now]-a[u]]=max(f[now][a[now]-a[u]],f[u][a[now]-a[u]]+1)\)
其中 \(now\) 为父亲节点,\(u\)为儿子节点
统计答案时,我们只要在所有的\(f[now][val]+f[now][-val]+1\)中取最大值就可以了
其实就是把两条链拼在一起
加上一是为了防止特判一些奇奇怪怪的边界问题,比如说只有一个点的情况
要注意 \(0\) 的时候要特判一下,因为此时\(val\)和\(-val\) 相等,直接更新会出错
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e6+5;
struct asd{
int from,to,next;
}b[maxn];
int head[maxn],tot=1,n,a[maxn],ans=0;
inline void ad(int aa,int bb){
b[tot].from=aa;
b[tot].to=bb;
b[tot].next=head[aa];
head[aa]=tot++;
}
inline int read(){
register int x=0,f=1;
char ch=getchar();
while(ch<'0' || ch>'9'){
if(ch=='-') f=-1;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*f;
}
map<int,int>f[maxn];
void dfs(int now,int fa){
int max0=0;
for(int i=head[now];i!=-1;i=b[i].next){
int u=b[i].to;
if(u==fa) continue;
dfs(u,now);
if(a[u]==a[now]){
if(f[now][0]<=f[u][0]+1){
max0=f[now][0];
f[now][0]=f[u][0]+1;
}
else if(max0<f[u][0]+1) max0=f[u][0]+1;
ans=max(ans,f[now][0]+max0+1);
} else {
f[now][a[now]-a[u]]=max(f[now][a[now]-a[u]],f[u][a[now]-a[u]]+1);
ans=max(ans,f[now][a[now]-a[u]]+f[now][a[u]-a[now]]+1);
}
}
}
int main(){
freopen("C.in","r",stdin);
freopen("C.out","w",stdout);
memset(head,-1,sizeof(head));
n=read();
for(int i=1;i<=n;i++){
a[i]=read();
}
for(register int i=1;i<n;i++){
register int aa,bb;
aa=read(),bb=read();
ad(aa,bb);
ad(bb,aa);
}
dfs(1,0);
printf("%d\n",ans);
return 0;
}
金题大战Vol.0 C、树上的等差数列的更多相关文章
- 金题大战Vol.0 A、凉宫春日的叹息
金题大战Vol.0 A.凉宫春日的叹息 题目描述 给定一个数组,将其所有子区间的和从小到大排序,求第 \(k\) 小的是多少. 输入格式 第一行两个数\(n\),$ k\(,表示数组的长度和\)k$: ...
- 金题大战Vol.0 B、序列
金题大战Vol.0 B.序列 题目描述 给定两个长度为 \(n\) 的序列\(a\), \(b\). 你需要选择一个区间\([l,r]\),使得\(a_l+-+a_r>=0\)且\(b_l+-+ ...
- 土题大战Vol.0 A. 笨小猴 思维好题
土题大战Vol.0 A. 笨小猴 思维好题 题目描述 驴蛋蛋有 \(2n + 1\) 张 \(4\) 星武器卡片,每张卡片上都有两个数字,第 \(i\) 张卡片上的两个数字分别是 \(A_i\) 与 ...
- 火题大战Vol.0 B 计数DP
火题大战Vol.0 B 题目描述 \(n\) 个沙茶,被编号 \(1\)~$ n$.排完队之后,每个沙茶希望,自己的相邻的两人只要无一个人的编号和自己的编号相差为 \(1\)(\(+1\) 或\(-1 ...
- 水题大战Vol.3 B. DP搬运工2
水题大战Vol.3 B. DP搬运工2 题目描述 给你\(n,K\),求有多少个\(1\)到\(n\) 的排列,恰好有\(K\)个数\(i\) 满足\(a_{i-1},a_{i+1}\) 都小于\(a ...
- 火题大战Vol.1 A.
火题大战Vol.1 A. 题目描述 给定两个数\(x\),\(y\),比较\(x^y\) 与\(y!\)的大小. 输入格式 第一行一个整数\(T\)表示数据组数. 接下来\(T\)行,每行两个整数\( ...
- [火星补锅] 水题大战Vol.2 T2 && luogu P3623 [APIO2008]免费道路 题解
前言: 如果我自己写的话,或许能想出来正解,但是多半会因为整不出正确性而弃掉. 解析: 这题算是对Kruskal的熟练运用吧. 要求一颗生成树.也就是说,最后的边数是确定的. 首先我们容易想到一个策略 ...
- [火星补锅] 水题大战Vol.2 T1 && luogu P1904 天际线 题解 (线段树)
前言: 当时考场上并没有想出来...后来也是看了题解才明白 解析: 大家(除了我)都知道,奇点和偶点会成对出现,而出现的前提就是建筑的高度突然发生变化.(这个性质挺重要的,我之前没看出来) 所以就可以 ...
- MathExam小学一二年级计算题生成器V1.0
MathExam小学一二年级计算题生成器v1.0 一.预估与实际 PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟) Planning ...
随机推荐
- 谷歌浏览器扩展 crx 下载
下方服务可让国内成功下载谷歌浏览器.crx 扩展,如谷歌浏览器无法安装,可以使用终极解决方法,把.crx 解压缩,然后在扩展中心中开启 开发者模式然后选择加载已解压的扩展程序. 需要注意的是解压缩的文 ...
- 搞定 CompletableFuture,并发异步编程和编写串行程序还有什么区别?你们要的多图长文
你有一个思想,我有一个思想,我们交换后,一个人就有两个思想 If you can NOT explain it simply, you do NOT understand it well enough ...
- AI面试之SVM推导
SVM现在主流的有两个方法.一个是传统的推导,计算支持向量求解的方法,一个是近几年兴起的梯度下降的方法. 梯度下降方法的核心是使用了hinge loss作为损失函数,所以最近也有人提出的深度SVM其实 ...
- Postman安装失败
https://blog.csdn.net/qq_21282443/article/details/86213972
- MySQL 删除表中所有数据
方法一:使用 delete from [表名] 生成日志 方法二:使用 truncate table [表名] 无日志生成 两种方式删除后再插入数据,第一条id的值不一样 方法一: 方法二 ...
- 恕我直言,我也是才知道ElasticSearch条件更新是这么玩的
背景 ElasticSearch 的使用度越来越普及了,很多公司都在使用.有做日志搜索的,有做商品搜索的,有做订单搜索的. 大部分使用场景都是通过程序定期去导入数据到 ElasticSearch 中, ...
- numpy巩固
导包 import numpy as np 创建二维数组 x = np.matrix([[1,2,3],[4,5,6]]) 创建一维数组 y = np.matrix([1,2,3,4,5,6]) x ...
- PHP unpack() 函数
实例 从二进制字符串对数据进行解包: <?php$data = "PHP";print_r(unpack("C*",$data));?>高佣联盟 w ...
- Python基础教程 (第2+3 版)打包pdf|内附网盘链接提取码
<Python基础教程 第3版>包括Python程序设计的方方面面:首先,从Python的安装开始,随后介绍了Python的基础知识和基本概念,包括列表.元组.字符 ...
- JavaScript动画实例:运动的字母特效
已知圆的坐标方程为: X=R*SIN(θ) Y=R*COS(θ) (0≤θ≤2π) 给定初始坐标位置(X,Y),按照圆的坐标方程,从角度angle = 0开始,每间隔angleSpeed = ...