Flink学习之路(一)Flink简介
一、什么是Flink?
Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台,提供支持流处理和批处理两种类型应用的功能。
二、Flink特点
1、现有的开源计算方案,会把流处理和批处理作为两种不同的应用类型:流处理一般需要支持低延迟、Exactly-Once保证,而批处理一般要支持高吞吐、高效处理
2、Flink是完全支持流处理,也就是说作为流处理看待时输入数据流是无界的;而批处理被作为一种特殊的流处理,只是它的输入数据流被定义为有界的。
技术特点:
1、流处理特性
支持高吞吐、低延迟、高性能的流处理
支持带有事件时间的窗口操作
支持有状态计算 的Exactly-Once语义
支持高度灵活的窗口操作,支持基于time、count、session,以及data-driver的窗口操作
支持具有Backpressure功能的持续六模型
支持基于轻量级分布式快照(Snapshot)实现的容错
支持迭代计算
支持程序自动优化:避免特点情况下Shuffle、排序等操作,中间结果有必要进行缓存
Flink在JVM内部实现了自己的内存管理
2、API支持
对Streaming数据类应用,提供DataStream API
对批处理类应用,提供DataSet API
3、Libraries支持
支持机器学习(FlinkML)
支持图分析(Gelly)
支持关系数据处理(Table)
支持复杂事件处理(CEP)
Flink系统的关键能力
1、低延时:提供ms级延时的处理能力
2、Exactly Once语义:提供异步快照机制,保证所有数据真正只处理一次
3、HA:JobManager支持主备模式,保证无单点故障
4、水平扩展能力:TaskManager支持手动水平扩展
三、Flink技术栈

1、从部署上讲,Flink支持Local模式、集群模式(standalone模式或者Yarn模式)、云端部署(GCE、EC2)
2、Runtime是主要的数据处理引擎,它以JobGraph形式的API接收程序。JobGraph是一个简单的并行数据流,包含一些列的tasks,每个task包含了输入和输出(source和sink例外)。
3、DataStream API和DataSet API分别是流处理和批处理的应用程序接口,当程序编译时,生成JobGraph。编译完成后,根据API的不同,优化器(批或流)会生成不同的执行计划。根据不同的部署方式,优化后的JobGraph被提交给executors去执行。
四、Flink架构

Flink整个系统包含三个部分:
1、Client:
给用户提供向Flink系统提交用户任务(流式作业)的能力。用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群。
Client会将用户提交的Flink程序组装成一个JobGraph,并且是以JobGraph的形式提交的。
2、TaskManager:
业务执行节点,执行具体用户任务。TaskManager可以有多个,各个TaskManager都平等。
实际负责执行计算的Worker,在其上执行Flink Job的一组Task。
负责管理其所在节点上的资源信息,如内存、磁盘、网络等,在启动的时候将资源状态向JobManager汇报。
3、JobManager:
管理节点,管理所有的TaskManager,并决策用户任务在哪些TaskManager上执行。
Master进程,Flink系统的协调者,它负责接收Flink Job及Job的管理和资源的协调,包括任务调度,检查点管理,失败恢复、调度组成Job的多个Task执行等。
对于集群为HA模式,可以同时多个master进程,其中一个作为leader,其他作为standby。当leader失败时,会选出一个standby的master作为新的leader(通过zookeeper实现leader选举)
分布式执行:

1、Flink程序提交给JobClient
2、JobClient再提交给JobManager
3、JobManager负责资源的协调和Job的执行
4、待资源分配完成,task就会分配到不同的TaskManager,TaskManager会初始化线程去执行task
5、根据程序的执行状态向JobManager反馈,执行的状态包括starting、in progress、finished以及canceled和failling等等
6、当Job执行完成,结果会返回给客户端
五、其他常用概念
1、Source
Flink系统源数据输入。
可以使用readTextFile(String path)来消费文件中的数据作为流数据的来源,默认情况下的格式是TextInputFormat。也可以通过readFile(FileInputFormat inputFormat,String path)来指定FileInputFormat的格式。
2、Transformation
Transformation允许将数据从一种形式转换为另一种形式,输入源可以是一个也可以是多个,输出则可以是0个、1个或者多个。例如以下Transformations:
Map:输入一个元素,输出一个元素。
FlatMap:输入一个元素,输出0个、1个或多个元素。
Filter:条件过滤使用。
KeyBy:逻辑上按照Key分组,内部使用hash函数进行分组,返回KeyedDataStream。
Reduce:KeyedStream流上,将上一次reduce的结果和本次的进行操作。
Fold:在KeyedStream流上的记录进行连接操作。
Aggregation:在keyedStream上应用类型min、max等聚合操作。
Window:消息流的分段即称为窗口,最常见的就是时间窗口。
我们可以将流切分到有界的窗口中去处理,根据指定的key,切分为不同的窗口。我们可以使用Flink预定义的窗口分配器。当然你也可以通过继承WindowAssginer自定义分配器。
下面看看有哪些预定义的分配器。
1. Global windows:Global window的范围是无限的,你需要指定触发器来触发窗口。通常来讲,每个数据按照指定的key分配到不同的窗口中,如果不指定触发器,则窗口永远不会触发。
2. Tumbling Windows:基于特定时间创建,大小固定,窗口间不会发生重合。例如你想基于event timen每隔10分钟计算一次,这个窗口就很适合。
3. Sliding Windows:大小也是固定的,但窗口之间会发生重合,例如你想基于event time每隔1分钟,统一过去10分钟的数据时,这个窗口就很适合。
4. Session Windows:允许我们设置一个gap时间,来决定在关闭一个session之前,我们要等待多长时间,是衡量用户活跃与否的标志。
WindowAll:WindowAll操作不是基于keu的,是对全局数据进行的计算。由于不基于key,因此是非并行的,即并行度为1,在使用时性能会受到影响。
Union:Union功能就是在2个或多个DataStream上进行连接,成为一个新的DataStream。
Join:Join运行在2个DataStream上基于相同的key进行连接操作,计算的范围也是要基于一个Window进行
Split:Split的功能是根据某些条件将一个流切分为2个或多个流
Select:DataStream根据选择的字段,将流转换为新的流
Project:project功能运行你选择流中的一部分元素作为新的数据流中的字段,相当于做个映射。
3、Sink
数据结果输出。将结果数据输出到不同的地方,Flink提供了以下一些选择:
1、writeAsText():将结果以字符串的形式一行一行写到文本文件中
2、writeAsCsv():保存为csv格式
3、print() / printErr():标准输出或错误输出。输出到Terminal或者out文件
4、writeUsingOutputFotmat():自定义输出格式,需要考虑序列化与反序列化
5、writeUsingOutputFormat():也可以输出到socket,但是你需要定义SerializationSchema。
4、DataStream
Flink中的DataStream程序是实现数据流转换的常规程序(例如,过滤,更新状态,定义窗口,聚合)。
最初从各种源(例如,消息队列,套接字流,文件)创建数据流。结果通过接收器返回,接收器可以例如将数据写入文件或标准输出(例如命令行终端)
5、物理切片
Flink允许我们在流上执行物理分片,当然我们也可以选择自定义partitionning
1、自定义partitioning:根据某个具体的key,将DataStream中的元素按照key重新进行分片,将相同的元素聚合到一个线程中执行。
2、随机partitioning:不根据具体的key,而是随机将数据打散。
3、Rebalancing partitioning:内部使用round robin方法将数据均匀打散。这对于数据倾斜时是很好的选择。广播用于将dataStream所有数据发到每一个partition.
Flink学习之路(一)Flink简介的更多相关文章
- flink学习笔记-快速生成Flink项目
说明:本文为<Flink大数据项目实战>学习笔记,想通过视频系统学习Flink这个最火爆的大数据计算框架的同学,推荐学习课程: Flink大数据项目实战:http://t.cn/EJtKh ...
- Flink学习(二)Flink中的时间
摘自Apache Flink官网 最早的streaming 架构是storm的lambda架构 分为三个layer batch layer serving layer speed layer 一.在s ...
- python学习之路-1 python简介及安装方法
python简介 一种面向对象.解释型计算机程序设计语言,由Guido van Rossum于1989年发明,第一个公开发行版发行于1991年. 目前最新版本为3.5.1,发布于2015年12月07日 ...
- GIT学习之路第一天 简介及其安装
本文参考廖雪峰老师的博客进行总结,完整学习请转廖雪峰博客 Git是什么? Git是目前世界上最先进的分布式版本控制系统(没有之一). Git有什么特点?简单来说就是:高端大气上档次! 那什么是版本控制 ...
- Sass学习之路(1)——Sass简介
Sass是CSS的一种预处理器语言,类似的语言还有Less,Stylus等. 那么什么是CSS预处理器? CSS 预处理器定义了一种新的语言,其基本思想是,用一种专门的编程语言,为 CSS 增加了一些 ...
- Qt 学习之路:Qt 简介
Qt 是一个著名的 C++ 应用程序框架.你并不能说它只是一个 GUI 库,因为 Qt 十分庞大,并不仅仅是 GUI 组件.使用 Qt,在一定程度上你获得的是一个“一站式”的解决方案:不再需要研究 S ...
- Qt 学习之路 :线程简介
现代的程序中,使用线程的概率应该大于进程.特别是在多核时代,随着 CPU 主频的提升,受制于发热量的限制,CPU 散热问题已经进入瓶颈,另辟蹊径地提高程序运行效率就是使用线程,充分利用多核的优势.有关 ...
- Git学习之路(2)-安装GIt和创建版本库
▓▓▓▓▓▓ 大致介绍 前面一片博客介绍了Git到底是什么东西,如果有不明白的可以移步 Git学习之路(1)-Git简介 ,这篇博客主要讲解在Windows上安装Git和创建一个版本库 ▓▓▓▓▓▓ ...
- Apache Flink学习笔记
Apache Flink学习笔记 简介 大数据的计算引擎分为4代 第一代:Hadoop承载的MapReduce.它将计算分为两个阶段,分别为Map和Reduce.对于上层应用来说,就要想办法去拆分算法 ...
随机推荐
- PyQt(Python+Qt)学习随笔:工具箱(QToolBox)编程使用的步骤及示例代码
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 使用toolBox开发应用时,通过Designer设计ui界面时,只能在Designer中设计too ...
- PyQt(Python+Qt)学习随笔:树型部件QTreeWidget中当前列currentColumn和选中项selectedItems访问方法
老猿Python博文目录 专栏:使用PyQt开发图形界面Python应用 老猿Python博客地址 当前列访问方法 树型部件QTreeWidget的currentColumn()方法返回当前项中得到焦 ...
- Mybatis学习03
title: Mybatis学习03 date: 2020-01-19 13:03:20 tags: Mybatis学习的第二天,内容有日志和分页. <!--more--> 1.日志 1. ...
- [SUCTF 2019]Game
buuoj杂项复现 下载了之后给了我们一张图片了网站的源代码 图片简单分析了之后没有什么内容,先看源代码的index.html 里面有base32编码,解码 ON2WG5DGPNUECSDBNBQV6 ...
- Scrum 冲刺第七天
一.每日站立式会议 1.会议内容 1)进行每日工作汇报 张博愉: 昨天已完成的工作:与林梓琦同学完成发帖模块的交接 今日工作计划:完善发帖模块的点赞.上传图片功能 工作中遇到的困难:Mybatis的一 ...
- 一份平民化的MySQL性能优化指南
前言 近期在重新学习总结MySQL数据库性能优化的相关知识,本文是根据自己学习以及日常性能测试调优过程中总结的经验整理了一份平民化的优化指南,希望对大家在进行MySQL调优分析时有帮助! MySQ ...
- 【JVM】类加载器与双亲委派
类加载器,顾名思义,即是实现类加载的功能模块,负责将Class的字节码形式加载成内存形式的Class对象.字节码文件可来源于磁盘或者jar包中的Class文件,也可以来自网络字节流. 类加载器 在JV ...
- 将ACCESS 的数据库中的表的文件 导出了EXCEL格式
将ACCESS 的数据库中的表的文件 导出了EXCEL格式 '''' '将ACCESS数据库中的某个表的信息 导出为EXCEL 文件格式 'srcfName ACCESS 数据库文件路径 'desfN ...
- NOI Online #2 提高组 游记
没 NOI Online 1 挂的惨就来写游记吧,不知道为啥 NOI Online 1 民间数据测得 60 分的 T1 最后爆零了... 昏昏沉沉的醒来,吃了早饭,等到 \(8:30\) 进入比赛网页 ...
- MySQL技术内幕InnoDB存储引擎(三)——文件相关
构成MySQL数据库和InnoDB存储引擎表的文件类型有: 参数文件:MySQL实例运行时需要的参数就是存储在这里. 日志文件:用来记录MySQL实例对某种条件做出响应时写入的文件. socket文件 ...