题目大意

洛谷链接

给出一个矩阵和 \(K\) ,问有多少子矩阵中的元素和能整除 \(K\)。

数据范围

\(2\leq n,m\leq 400\),\(0\leq K\leq 10^6\)。

思路

暴力枚举 \(O(n^6)\),二维前缀和优化 \(O(n^4)\)。

根据数据范围我们需要想出至少 \(O(n^3)\) 的方法。而枚举左上角或右下角的方法显然是不可取的,所以我们想怎么优化枚举矩阵的方法。

我们可以通过枚举上界和下界,从而规定矩阵的高度,从而得到许多等高矩阵。从而可以把其抽象为一维,则答案变成求一个序列中区间和能整除 \(K\) 的区间数量。

如图:

设前缀和为 \(sum\),则

\[\because\ (sum[r]-sum[l-1])\ \mathrm{mod}\ K=0
\]
\[\therefore\ sum[r]\equiv sum[l-1]\pmod K
\]

所以我们可以开桶记录相同的余数来统计答案(每次找到相同的都加一下),不过有个需要细的地方就是余数为 \(0\) 的时候,此时需要统计三个答案,因为两个前缀和本身也是符合条件的。

代码

\(O(n^3)\) 100分代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=400+10;
const int maxm=1e6+10;
int n,m,K,ans;
int a[maxn][maxn],sum[maxn][maxn],cnt[maxm],b[maxm]; inline int read(){
int x=0,fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=-1;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return x*fopt;
} signed main(){
n=read();m=read();K=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
} for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++){
cnt[0]=1;
for(int k=1;k<=m;k++){
b[k]=(sum[j][k]-sum[i-1][k]+K)%K;
ans+=cnt[b[k]];
cnt[b[k]]++;
}
for(int k=1;k<=m;k++)
cnt[b[k]]=0;
} printf("%lld\n",ans);
return 0;
}

\(O(n^4)\) 60分代码:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=400+10;
int n,m,K,ans;
int a[maxn][maxn],sum[maxn][maxn]; inline int read(){
int x=0,fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=-1;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return x*fopt;
} signed main(){
n=read();m=read();K=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
} for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=i;k<=n;k++)
for(int q=j;q<=m;q++){
if((sum[k][q]-sum[i-1][q]-sum[k][j-1]+sum[i-1][j-1])%K==0)
ans++;
} printf("%lld\n",ans);
return 0;
}

【思维】Luogu P3941 入阵曲的更多相关文章

  1. [luogu]P3941 入阵曲[前缀和][压行]

    [luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然 ...

  2. Luogu P3941 入阵曲【前缀和】By cellur925

    题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...

  3. luogu P3941 入阵曲

    嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维 ...

  4. 洛谷P3941入阵曲

    题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...

  5. P3941 入阵曲

    \(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...

  6. [洛谷P3941] 入阵曲

    题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...

  7. 落谷P3941 入阵曲

    题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...

  8. [洛谷P3941]:入阵曲(前缀和+桶)

    题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...

  9. 题解 P3941 入阵曲

    题解 观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\) 正解: 我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减 ...

随机推荐

  1. Unit4:碎片

    基本使用 动态调用 碎片和活动 碎片周期

  2. [LeetCode]72. 编辑距离(DP)

    题目 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1 ...

  3. JVM七大垃圾回收器上篇Serial、ParNeW、Parallel Scavenge、 Serial Old、 Parallel Old、 CMS、 G1

    GC逻辑分类 垃圾收集器没有在规范中进行过多的规定,可以由不同的厂商.不同版本的JVM来实现. 由于JDK的版本处于高速迭代过程中,因此Java发展至今已经衍生了众多的GC版本. 从不同角度分析垃圾收 ...

  4. yum管理——ningx部署私有repo源(4)

    一.前言: 为了加快安装效率,或者日后服务器处于内网环境,本次特写一片搭建的是一个属于个人私有repo源仓库,思路如下: 1.首先到mirrors.ustc.edu.cn下载用到的源的仓库 2.然后安 ...

  5. 云计算openstack——虚拟机获取不到ip(13)

    一.现象描述: openstack平台中创建虚拟机后,虚拟机在web页面中显示获取到了ip,但是打开虚拟机控制台后查看网络状态,虚拟机没有ip地址,下图为故障截图: 二.分析思路: (1)查看neut ...

  6. cnblog维护

    title: 博客归纳 blog: CSDN data: Java学习路线及视频 2019 12/31 时间管理 2020 1/22 Git是什么? 1/23 Git安装--Windows 3/24 ...

  7. ribbon源码(2) 负载均衡器

    负载均衡器对外提供负载均衡的功能,本质上是是维护当前服务的服务器列表和服务器状态,通过负载均衡算法选取合适的服务器地址. 用户可以通过实现ILoadBalancer来实现自己的负载均衡器,ribbon ...

  8. Flutter学习四之实现一个支持刷新加载的列表

    上一篇文章用Scaffold widget搭建了一个带底部导航栏的的项目架构,这篇文章就来介绍一下在flutter中怎么实现一个带下拉刷新和上拉加载更多的一个列表,这里用到了pull_to_refre ...

  9. Linux基本目录机构

    Linux基本目录机构 1. 基本介绍 Linux的文件系统采用级层式子的树状目录结构 最上层是根目录"/" Linux世界里,一切皆文件 2. 目录用途 /bin: 是Binar ...

  10. python自动保存百度网盘资源

    觉得有帮助的别忘了关注一下知识图谱与大数据公众号,完整代码移步从今天开始种树 开始 在上一文中,我们保存了百度云盘的地址和提取码,但是这种分享链接很容易被屏蔽,最好的做法就是保存资源到自己的网盘,不过 ...