【思维】Luogu P3941 入阵曲
题目大意
给出一个矩阵和 \(K\) ,问有多少子矩阵中的元素和能整除 \(K\)。
数据范围
\(2\leq n,m\leq 400\),\(0\leq K\leq 10^6\)。
思路
暴力枚举 \(O(n^6)\),二维前缀和优化 \(O(n^4)\)。
根据数据范围我们需要想出至少 \(O(n^3)\) 的方法。而枚举左上角或右下角的方法显然是不可取的,所以我们想怎么优化枚举矩阵的方法。
我们可以通过枚举上界和下界,从而规定矩阵的高度,从而得到许多等高矩阵。从而可以把其抽象为一维,则答案变成求一个序列中区间和能整除 \(K\) 的区间数量。
如图:

设前缀和为 \(sum\),则
\]
\]
所以我们可以开桶记录相同的余数来统计答案(每次找到相同的都加一下),不过有个需要细的地方就是余数为 \(0\) 的时候,此时需要统计三个答案,因为两个前缀和本身也是符合条件的。
代码
\(O(n^3)\) 100分代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=400+10;
const int maxm=1e6+10;
int n,m,K,ans;
int a[maxn][maxn],sum[maxn][maxn],cnt[maxm],b[maxm];
inline int read(){
int x=0,fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=-1;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return x*fopt;
}
signed main(){
n=read();m=read();K=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++){
cnt[0]=1;
for(int k=1;k<=m;k++){
b[k]=(sum[j][k]-sum[i-1][k]+K)%K;
ans+=cnt[b[k]];
cnt[b[k]]++;
}
for(int k=1;k<=m;k++)
cnt[b[k]]=0;
}
printf("%lld\n",ans);
return 0;
}
\(O(n^4)\) 60分代码:
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int maxn=400+10;
int n,m,K,ans;
int a[maxn][maxn],sum[maxn][maxn];
inline int read(){
int x=0,fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=-1;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return x*fopt;
}
signed main(){
n=read();m=read();K=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++){
a[i][j]=read();
sum[i][j]=sum[i-1][j]+sum[i][j-1]-sum[i-1][j-1]+a[i][j];
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
for(int k=i;k<=n;k++)
for(int q=j;q<=m;q++){
if((sum[k][q]-sum[i-1][q]-sum[k][j-1]+sum[i-1][j-1])%K==0)
ans++;
}
printf("%lld\n",ans);
return 0;
}
【思维】Luogu P3941 入阵曲的更多相关文章
- [luogu]P3941 入阵曲[前缀和][压行]
[luogu]P3941 入阵曲 题目描述 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整个世界都焕然 ...
- Luogu P3941 入阵曲【前缀和】By cellur925
题目传送门 题目大意:给你一个\(n\)*\(m\)的矩阵,每个位置都有一个数,求有多少不同的子矩阵使得矩阵内所有数的和是\(k\)的倍数. 数据范围给的非常友好233,期望得到的暴力分:75分.前1 ...
- luogu P3941 入阵曲
嘟嘟嘟 这道题我觉得跟最大子矩阵那道题非常像,都是O(n4)二维前缀和暴力很好想,O(n3)正解需要点转化. O(n4)暴力就不说啦,二维前缀和,枚举所有矩形,应该能得55分. O(n3)需要用到降维 ...
- 洛谷P3941入阵曲
题目传送门 这道题也是今年湖南集训队Day8的第一题,昨天洛谷的公开赛上又考了一遍,来发个记录(其实是因为五月天,另外两道题分别是将军令和星空,出这次题目的人肯定同为五迷(✪㉨✪)) 话不多说.先理解 ...
- P3941 入阵曲
\(\color{#0066ff}{ 题目描述 }\) 小 F 很喜欢数学,但是到了高中以后数学总是考不好. 有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识算法竞赛的 时候,觉得整 ...
- [洛谷P3941] 入阵曲
题目背景 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 入阵曲 题解在代码里. #include<iostream> #include<cstdio> #include& ...
- 落谷P3941 入阵曲
题目背景 pdf题面和大样例链接:http://pan.baidu.com/s/1cawM7c 密码:xgxv 丹青千秋酿,一醉解愁肠. 无悔少年枉,只愿壮志狂. 题目描述 小 F 很喜欢数学,但是到 ...
- [洛谷P3941]:入阵曲(前缀和+桶)
题目传送门 题目背景 丹青千秋酿,一醉解愁肠.无悔少年枉,只愿壮志狂. 题目描述 小$F$很喜欢数学,但是到了高中以后数学总是考不好.有一天,他在数学课上发起了呆:他想起了过去的一年.一年前,当他初识 ...
- 题解 P3941 入阵曲
题解 观察数据范围,可以 \(\mathcal O(n^2m^2)\) 暴力计算,而加上特殊性质,则可以骗到 \(75pts\) 正解: 我们发现,在一维情况下,\(\mod k\) 相同的前缀和相减 ...
随机推荐
- appium多线程自动化
基于上篇讲述的appium自动启动停止.测试服务.对controller文件进行相应的修改 1.首先对start_server函数,应采用多线程模式启动多个server,如下 其中启动的每个线程函数s ...
- Minimizing maximizer(POJ 1769)
原题如下: Minimizing maximizer Time Limit: 5000MS Memory Limit: 30000K Total Submissions: 5104 Accep ...
- oracle之二归档日志
归档日志 archivelog 5.1 归档和非归档的区别 1)归档会在日志切换时,备份历史日志,用于OLTP,可以进行冷备份和热备份,可以实现数据库完全恢复.不完全恢复(基于时间点) ...
- 深度长文整理-Redis进阶
目录 一.基础 二.为什么Redis是单线程的? 三.为什么单线程这么快? 四.select.poll.epoll 五.Redis的事物 六.Redis的监控 七.Redis的配置文件 八.Redis ...
- ip子网掩码计算及子网划分
为什么要懂 子网掩码计算,及子网划分属于网络基础知识.一般在几个地方会用到: 公司避免产生网络风暴而划分子网,帮助路由器判断对应主机是否在同一个网段中 服务器相互隔离而划分子网,一般机房管理人员规划: ...
- 关于sqlmap当中tamper脚本编码绕过原理的一些总结(学习python没多久有些地方肯定理解有些小问题)
sqlmap中tamper脚本分析编写 置十对一些编码实现的脚本,很多sqlmap里面需要引用的无法实现,所以有一部分例如keywords就只写写了几个引用了一下,其实这里很多脚本运用是可以绕过安全狗 ...
- ISCC2018 writeup(web)
比较数字大小 F12 修改maxlength为4 web01 strcmp()函数遇到数组会返回NULL 而PHP是弱类型语言 在==比较的时候,如果有数值的话会先将字符串转换为数值在进行比较,而N ...
- mysql load_file()
本地mysql注入读取配置文件 遇到的问题 简单记录一下. 本地测试时,读取文件发现无论怎样都返回为NULL. >> select load_file('c:/xx/xx/xx/x.txt ...
- 新手学习Python第三方包库pip安装失败总结
这篇文章纯原创,是之前自己学习使用pyhton时遇到的问题,故在此记录一下. 问题与需求:用python下载第三方库或包的时候出错怎么办? 方法有一下三种,可以解决大部分的问题. 1.在cmd命令控制 ...
- Azure Storage 系列(七)使用Azure File Storage
一,引言 今天我们开始介绍 Storage 中的最后一个类型的存储----- File Storage(文件存储),Azure File Storage 在云端提供完全托管的文件共享,这些共享项可通过 ...