一、单机安装

1.准备安装包

将源码编译出的安装包拷贝出来(编译请参照上一篇01.Flink笔记-编译、部署)或者在Flink官网下载bin包

2.配置

前置:jdk1.8+

修改配置文件flink-conf.yaml

#Flink的默认WebUI端口号是8081,如果有冲突的服务,可更改
rest.port: 18081

其余项选择默认即可

3.启动

  • Linux:
./bin/start-cluster.sh

  • Win:
cd bin
start-cluster.bat

win本地启动如下(图片模糊可右击在新标签中打开)

二、单机WordCount

1.java版本

import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;
/**
* @author :qinglanmei
* @date :Created in 2019/4/10 11:10
* @description:flink的java版本window示例
*/
public class WindowWordCount {
public static void main(String[] args) throws Exception{
final String hostname;
final int port;
try {
final ParameterTool params = ParameterTool.fromArgs(args);
hostname = params.has("hostname") ? params.get("hostname") : "localhost";
port = params.has("port") ? params.getInt("port"):9999;
   } catch (Exception e) {
System.err.println("No port specified. Please run 'SocketWindowWordCount " +
"--hostname <hostname> --port <port>', where hostname (localhost by default) " +
"and port is the address of the text server");
System.err.println("To start a simple text server, run 'netcat -l <port>' and " +
"type the input text into the command line");
return;
}
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
DataStream<Tuple2<String,Integer>> dataStream = env
.socketTextStream(hostname,port)
.flatMap(new Splitter())
.keyBy(0)
.timeWindow(Time.seconds(5),Time.seconds(5))
.sum(1);
dataStream.print();
env.execute("WindowWordCount");
}
public static class Splitter implements FlatMapFunction<String, Tuple2<String, Integer>> {
@Override
public void flatMap(String sentence, Collector<Tuple2<String, Integer>> out) throws Exception {
for(String word : sentence.split(" ")){
out.collect(new Tuple2<String, Integer>(word, 1));
}
}
} }

2.scala版本

  • 本地安装scala

  • idea配置scala插件

  • scala的maven插件

 <plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<executions>
<execution>
<id>scala-compile-first</id>
<phase>process-resources</phase>
<goals>
<goal>add-source</goal>
<goal>compile</goal>
</goals>
</execution>
<execution>
<id>scala-test-compile</id>
<phase>process-test-resources</phase>
<goals>
<goal>testCompile</goal>
</goals>
</execution>
</executions>
</plugin>
  • 代码详细

import org.apache.flink.api.java.utils.ParameterTool
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.scala._ object SocketWindowCount { def main(args: Array[String]): Unit = {
val port = try{
ParameterTool.fromArgs(args).getInt("port")
}catch {
case e:Exception =>{
System.err.println("No port specified. Please run 'SocketWindowWordCount --port <port>'")
return
}
}
//1.获取env
val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
//2.通过socket连接获取输入数据 val text = env.socketTextStream("localhost",port,'\n')
//3.一系列操作
/**
* timeWindow(size,slide)
* size:窗口大小,slide:滑动间隔。分为以下三种情况:
* 1. 窗口大小等于滑动间隔:这个就是滚动窗口,数据不会重叠,也不会丢失数据。
* 2. 窗口大小大于滑动间隔:这个时候会有数据重叠,也即是数据会被重复处理。
* 3. 窗口大小小于滑动间隔:必然是会导致数据丢失,不可取。
*/
val windowCounts = text
.flatMap { w => w.split("\\s") }
.map {x:String => WordWithCount(x,1)}
.keyBy(0)
.timeWindow(Time.seconds(5),Time.seconds(5))
.sum(1)
//4.输出结果,打印
windowCounts.print().setParallelism(1)
//5.env执行
env.execute("Socket window WordCount") }
case class WordWithCount(value: String, i: Long)
}

3.win本地开发环境测试

安装netcat

打开cmd启动nc端口号监听(win下需加-p)

nc -l -p 

idea中配置输出参数

运行程序、在cmd命令窗口输入单词、按空格分隔、在idea本地即可输出结果

4.Flink单机提交(Linux)

Linux安装的是Flink1.8

  • 本地maven打包
mvn clean package
  • 上传jar包到Linux
  • 启动Flink节点(单机)
  • 另起一窗口,打开nc -l 9999,输入单词,按空格分隔
  • 运行jar包
flink run -c com.qinglanmei.demo.flink.SocketWindowCount ./common-flink-core-1.0.jar --port 9999
  • 查看输出结果,Flink上运行的输出在log/flink-root-taskexecutor-0-bigdata01.out
 tail -f /flink/flink-1.8.0/log/flink-root-taskexecutor-0-bigdata01.out

 结果如下

观察Flink的Web界面

可以发现

  • Total Jobs的Running=1
  • Available Task Slots=0,说明单机的flink任务槽已经被占用了,因为每个槽运行一个并行管道

三、集群安装

1.standalone

环境配置:

  • jdk1.8+
  • ssh免密(具有相同的安装目录)

Flink设置

将源码编译出的安装包拷贝出来(编译请参照上一篇01.Flink笔记-编译、部署)或者在Flink官网下载bin包

节点分配:三个节点01-03分别是master、worker01.work02

flink-conf.yaml配置

# 主节点地址
jobmanager.rpc.address: bigdata01
# 任务槽数
taskmanager.numberOfTaskSlots: 2
# 端口号默认8081,因为与我的其他组建冲突,故改成18081
rest.port: 18081

可选配置:

  • 每个JobManager(jobmanager.heap.mb)的可用内存量,
  • 每个TaskManager(taskmanager.heap.mb)的可用内存量,
  • 每台机器的可用CPU数量(taskmanager.numberOfTaskSlots),
  • 集群中的CPU总数(parallelism.default)和
  • 临时目录(taskmanager.tmp.dirs

修改配置文件masters、slaves

[root@bigdata01 conf]# vim masters
bigdata01:18081
[root@bigdata01 conf]# vim slaves
bigdata02
bigdata03

拷贝01的目录到另外两台节点

scp -r flink-1.8.0/ bigdata02:/flink/
scp -r flink-1.8.0/ bigdata03:/flink/

配置环境变量(每个节点)

vim /etc/profile
#flink
export FLINK_HOME=/flink/flink-1.8.0
export PATH=$FLINK_HOME/bin:$PATH

使其生效source /etc/profile

启动Flink集群

start-cluster.sh

查看进程

查看web

界面说明

Task Managers:等于worker数,即slaves文件中配置的节点数

Task Slots:等于worker数*taskmanager.numberOfTaskSlots,taskmanager.numberOfTaskSlots即flink-conf.yaml中配置的参数

Available Task Slots:在没有job情况下等于Task Slots

2.HA

修改配置文件

修改flink-conf.yaml,高可用模式不需要指定jobmanager.rpc.address,在masters中添加jobmanager节点,由zookeeper做选举

#jobmanager.rpc.address: bigdata01
high-availability: zookeeper #指定高可用模式(必须)
high-availability.zookeeper.quorum: bigdata01:2181,bigdata02:2181,bigdata03:2181 #ZooKeeper仲裁是ZooKeeper服务器的复制组,它提供分布式协调服务(必须)
high-availability.storageDir:hdfs: ///flink/ha/ #JobManager元数据保存在文件系统storageDir中,只有指向此状态的指针存储在ZooKeeper中(必须)
high-availability.zookeeper.path.root: /flink #根ZooKeeper节点,在该节点下放置所有集群节点(推荐)
#自定义集群(推荐)
high-availability.cluster-id: /flinkCluster
state.backend: filesystem
state.checkpoints.dir: hdfs:///flink/checkpoints
state.savepoints.dir: hdfs:///flink/checkpoints

修改masters

[root@bigdata01 conf]# vim masters
bigdata01:18081
bigdata02:18081

修改slaves

[root@bigdata01 conf]# vim slaves
bigdata02
bigdata03

修改conf/zoo.cfg

# ZooKeeper quorum peers
server.1=bigdata01:2888:3888
server.2=bigdata02:2888:3888
server.3=bigdata03:2888:3888

其余节点同步配置文件

scp -r conf/ bigdata02:/flink/flink-1.8.0/
scp -r conf/ bigdata02:/flink/flink-1.8.0/

启动

先启动zookeeper集群、再启动hadoop、最后启动flink

02.Flink的单机wordcount、集群安装的更多相关文章

  1. hbase单机及集群安装配置,整合到hadoop

    问题导读:1.配置的是谁的目录conf/hbase-site.xml,如何配置hbase.rootdir2.如何启动hbase?3.如何进入hbase shell?4.ssh如何达到互通?5.不安装N ...

  2. nacos单机,集群安装部署

    nacos单机启动 准备 下载nacos安装包 下载地址 准备centos环境 (本次测试使用docker) PS C:\Users\Administrator> docker run -tid ...

  3. RabbitMQ3 单机及集群安装配置及优化

    一.操作系统需求及配置 # 1.1.操作系统推荐配置 4C*8G*40G磁盘 # 1.2.内核参数优化 # 系统参数需要留有swap空间,rabbitmq 启动进程用户打开文件数至少需要5万,yum安 ...

  4. 第06讲:Flink 集群安装部署和 HA 配置

    Flink系列文章 第01讲:Flink 的应用场景和架构模型 第02讲:Flink 入门程序 WordCount 和 SQL 实现 第03讲:Flink 的编程模型与其他框架比较 第04讲:Flin ...

  5. Greenplum源码编译安装(单机及集群模式)完全攻略

    公司有个项目需要安装greenplum数据库,让我这个gp小白很是受伤,在网上各种搜,结果找到的都是TMD坑货帖子,但是经过4日苦战,总算是把greenplum的安装弄了个明白,单机及集群模式都部署成 ...

  6. hbase单机环境的搭建和完全分布式Hbase集群安装配置

    HBase 是一个开源的非关系(NoSQL)的可伸缩性分布式数据库.它是面向列的,并适合于存储超大型松散数据.HBase适合于实时,随机对Big数据进行读写操作的业务环境. @hbase单机环境的搭建 ...

  7. ZooKeeper 的安装和配置---单机和集群

    如题本文介绍的是ZooKeeper 的安装和配置过程,此过程非常简单,关键是如何应用(将放在下节及相关节中介绍). 单机安装.配置: 安装非常简单,只要获取到 Zookeeper 的压缩包并解压到某个 ...

  8. flink部署操作-flink standalone集群安装部署

    flink集群安装部署 standalone集群模式 必须依赖 必须的软件 JAVA_HOME配置 flink安装 配置flink 启动flink 添加Jobmanager/taskmanager 实 ...

  9. Redis学习笔记之Redis单机,伪集群,Sentinel主从复制的安装和配置

    0x00 Redis简介 Redis是一款开源的.高性能的键-值存储(key-value store).它常被称作是一款数据结构服务器(data structure server). Redis的键值 ...

随机推荐

  1. 字节真题 ZJ26-异或:使用字典树减少计算次数

    原题链接 题目描述: 个人分析:从输入数据看,要处理的元素个数(n)没有到达 10^9 或 10^8 级,或许可以使用暴力?但是稍微计算一下,有 10^5 * (10^5 - 1) / 2 = 10^ ...

  2. 利用Python实现定时发送邮件,实现一款营销工具

    说起自动化绝对算是茶余饭后最有显B格的谈资,毕竟解放双手是从老祖先那里就流传下来的基因,都2020了,你每天上班还要登录各个邮箱账号查收邮件?快来解锁本章内容 整体思路 很多人学习python,不知道 ...

  3. Python玩转各种多媒体,视频、音频到图片

    我们经常会遇到一些对于多媒体文件修改的操作,像是对视频文件的操作:视频剪辑.字幕编辑.分离音频.视频音频混流等.又比如对音频文件的操作:音频剪辑,音频格式转换.再比如我们最常用的图片文件,格式转换.各 ...

  4. PB级大规模Elasticsearch集群运维与调优实践

    导语 | 腾讯云Elasticsearch 被广泛应用于日志实时分析.结构化数据分析.全文检索等场景中,本文将以情景植入的方式,向大家介绍与腾讯云客户合作过程中遇到的各种典型问题,以及相应的解决思路与 ...

  5. 在Linux系统中安装Tomcat详细教程

    首先在官网下载jdk和Tomcat的压缩包 这里下载jdk-8u241-linux-x64 .tar.gz 和apache-tomcat-8.5.50.tar.gz 然后解压jdk压缩包 tar –z ...

  6. JS学习第三天

    运算符: 赋值运算符 “=” ,将“=”右边的值赋值给左边 比较运算符 “>   <   >=  <=   ==   !=   ===”,  ==比较两边内容是否一致      ...

  7. 基于Linux系统geth的安装

    转载地址 https://blog.csdn.net/qq_36124194/article/details/83658580 基于Linux系统geth的安装 安装ethereum sudo apt ...

  8. Oracle元数据信息

    一.schema操作 1)查看当前schema select user, sys_context('userenv','current_schema') from dual; 2)切换schema a ...

  9. 太厉害了,阿里大牛居然把Git,GitHub总结的这么全面,撸源码去

    “版本控制系统”( Version Control System, vcs)是程序代码管理软件的通称,是用来保存程序文件的修改记录以及历史版本,以便日后查看或是使用.Vcs已经有数十年的发展历史,最早 ...

  10. c++知识点 2006-10-14 12:59

    这是自己开发一个简易的监控系统时的所用到的知识点. 第一个问题 在网络传输数据时可以传int,float,doule,char,等包括结构体类型但是除类类型外. 在调试中要常用merry寄存器. 应用 ...