• 题意:给你一个数列,求所有子序列对的\(lcm\),然后求这些所有\(lcm\)的\(gcd\).

  • 题解:我们对所有数分解质因数,这里我们首先要知道一个定理:

    ​ 对于\(n\)个数,假如某个质数\(p\),这\(n\)个数中有\(\le n-1\)个数的质因数包含\(p\),那么他们的\(lcm\)中一定不含\(p\)这个因数,随意我们先预处理出每个数的质因子,选择个数\(\ge n-1\)的质因子.

    ​ 然后,在这些质因子中,我们要求每两两之间的\(lcm\),然后再求他们的\(gcd\),不难发现,他们最后得到的\(gcd\)一定是那些\(lcm\)中最小的数,而\(lcm\)最小的数一定是不同次相同底第二小的数(包括1).

    ​ 所以,假如\(p\)的数量为\(n\),那么就选次数第二小的,如果为\(n-1\),就选最小的(因为1肯定比它小).

    ​ 最后,累乘一下就行了.

  • 代码:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <vector>
    #include <map>
    #include <set>
    #include <unordered_set>
    #include <unordered_map>
    #define ll long long
    #define fi first
    #define se second
    #define pb push_back
    #define me memset
    const int N = 1e6 + 10;
    const int mod = 1e9 + 7;
    using namespace std;
    typedef pair<int,int> PII;
    typedef pair<long,long> PLL; int n;
    ll x;
    vector<ll> Hash[N];
    void divide(ll x){
    ll cnt=0;
    for(ll i=2;i<=x/i;++i){
    if(x%i==0){
    cnt=0;
    while(x%i==0){
    x/=i;
    cnt++;
    }
    Hash[i].pb(cnt);
    }
    }
    if(x>1) Hash[x].pb(1);
    } ll fpow(ll a,ll k){
    ll res=1;
    while(k){
    if(k&1) res=res*a;
    k>>=1;
    a=a*a;
    }
    return res;
    } int main() {
    ios::sync_with_stdio(false);
    cin>>n;
    for(ll i=1;i<=n;++i){
    cin>>x;
    divide(x);
    }
    ll ans=1;
    for(ll i=1;i<=200000;++i){
    if(Hash[i].size()>=n-1){
    sort(Hash[i].begin(),Hash[i].end());
    if(Hash[i].size()==n) ans*=fpow(i,Hash[i][1]);
    else ans*=fpow(i,Hash[i][0]);
    }
    }
    printf("%lld\n",ans);
    return 0;
    }

Codeforces #6241 div2 C. Orac and LCM (数学)的更多相关文章

  1. Codeforces #180 div2 C Parity Game

    // Codeforces #180 div2 C Parity Game // // 这个问题的意思被摄物体没有解释 // // 这个主题是如此的狠一点(对我来说,),不多说了这 // // 解决问 ...

  2. Codeforces #541 (Div2) - E. String Multiplication(动态规划)

    Problem   Codeforces #541 (Div2) - E. String Multiplication Time Limit: 2000 mSec Problem Descriptio ...

  3. Codeforces #541 (Div2) - F. Asya And Kittens(并查集+链表)

    Problem   Codeforces #541 (Div2) - F. Asya And Kittens Time Limit: 2000 mSec Problem Description Inp ...

  4. Codeforces #541 (Div2) - D. Gourmet choice(拓扑排序+并查集)

    Problem   Codeforces #541 (Div2) - D. Gourmet choice Time Limit: 2000 mSec Problem Description Input ...

  5. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

  6. 【Codeforces #312 div2 A】Lala Land and Apple Trees

    # [Codeforces #312 div2 A]Lala Land and Apple Trees 首先,此题的大意是在一条坐标轴上,有\(n\)个点,每个点的权值为\(a_{i}\),第一次从原 ...

  7. Codeforces Round #613 (Div. 2) C. Fadi and LCM (数学)

    题意:给你一个正整数\(x\),找两个正整数\(a\),\(b\),使得\(lcm(a,b)=x\),并且\(max(a,b)\)最小. 题解:我们知道,\(lcm(a,b)=a*b/gcd(a,b) ...

  8. codeforces 356 div2 C.Bear and Prime 100 数学

    C. Bear and Prime 100 time limit per test 1 second memory limit per test 256 megabytes input standar ...

  9. Codeforces Round #641 div2 B. Orac and Models (DP)

    题意:有一个长度为\(n\)的序列\(a\),求一个最长上升子序列,且这个子序列的元素在\(a\)中的位置满足\(i_{j+1}modi_{j}=0\),求这个子序列的最大长度. 题意:这题假如我们用 ...

随机推荐

  1. [GKCTF2020]老八小超市儿

    题目来自buu 一.题目初探 首先是一个shopxo搭建的演示站,通过扫描后台得到如下的网页 二.题目解答 首先是找到后台登陆的admin.php,然后通过百度找到shopxo的默认管理员登陆账号和密 ...

  2. HTML基础复习3

    CSS 可以理解为对HTML的一种补充 CSS由两部分组成:选择器.声明,声明中包含属性和值 CSS中的选择器 HTML标签选择器 类选择器 在标签上使用class属性为标签起个类名,在CSS中使用. ...

  3. Kubernetes 存储简介

    存储分类结构图 半持久化存储 1.EmptyDir EmptyDir是一个空目录,生命周期和所属的 Pod 是完全一致的,EmptyDir的用处是,可以在同一 Pod 内的不同容器之间共享工作过程中产 ...

  4. 向HDFS中指定的文件追加内容,由用户指定内容追加到原有文件的开头或结尾。

    1 import java.io.FileInputStream; 2 import java.io.IOException; 3 import java.text.SimpleDateFormat; ...

  5. vercel是什么神仙网站?

    Vercel? vercel是我用过的最好用的网站托管服务.本网站就是基于hexo引擎模板开发,托管在vercel上的. vercel类似于github page,但远比github page强大,速 ...

  6. (009)每日SQL学习:Oracle各个键说明(转)

    原文地址:http://www.agiledata.org/essays/keys.html 本文概述关系数据库中为表指定主键的策略.主要关注于何时使用自然键或者代理键的问题.有些人会告诉你应该总是使 ...

  7. 正则r的作用

    >>> mm = "c:\\a\\b\\c" >>> mm 'c:\\a\\b\\c' >>> print(mm) c:\a\ ...

  8. P5689 多叉堆

    写在前面 OI 生涯中 AC 的首道组合数学应用题. 开题 5min 发现规律,写了半下午代码,调了两天,然而甚至没过样例,心态崩了.几天之后重新写了一份代码才 AC. 虽然思维难度不大,但毕竟是联赛 ...

  9. CF976B

    这是一道考验思维找规律的题,很有可做性. 正文 题意 一个 n * m 的矩阵,从左上角(1 , 1) 开始,先向下走直到最下方,再向右走到最右,再向上走一个,再走到最左......一直走到(1 , ...

  10. 无刷电调基础知识以及BLHeli固件烧录和参数调整

    标题: 无刷电调基础知识以及BLHeli固件烧录和参数调整 作者: 梦幻之心星 sky-seeker@qq.com 标签: [#基础知识,#电调,#BLHeli,#固件,#烧录,#调参] 目录: [电 ...