Description

You have N integers, A1A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is
to ask for the sum of numbers in a given interval.

Input

The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.

The second line contains N numbers, the initial values of A1A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.

Each of the next Q lines represents an operation.

"C a b c" means adding c to each of AaAa+1, ... , Ab. -10000 ≤ c ≤ 10000.

"Q a b" means querying the sum of AaAa+1, ... , Ab.

Output

You need to answer all Q commands in order. One answer in a line.

Sample Input

10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4

Sample Output

4
55
9
15

Hint

The sums may exceed the range of 32-bit integers.

这题是线段树成段更新,看别人代码想了很久。
思路:开一个结构体,含有左右边界l,r,这段区间线段总和sum,更新标志ans(整段区间内每个数要加的数值)。
每次一个区间更新(即加一个数value)的时候,从第一个线线段开始向下判断,如果更新的区间刚好是这条线段的区间,那么直接加上更新的数值value并返回,否则整段区间的sum值变为sum+(b-a+1)*value,再在子节点中找直到找到区间大小加好符合的时候,ans=ans+value,返回。
每一次询问,从第一个线段开始向下,如果区间刚好符合,那么返回区间的sum否则把这条线段的更新标志往子节点传,同时这条线段的更新标志变为0.这里我采用的是每一次更新就把每根点段的总和都保存在sum中,这样询问的时候就不用麻烦的加上b[i].ans*(b[i].r-b[i].l+1).


#include<stdio.h>
#include<string.h>
#define maxn 100005
#define ll long long
char str[10];
ll a[maxn];
struct node
{
ll l,r,sum,ans;
}b[4*maxn]; void build(ll l,ll r,ll i)
{
ll mid;
b[i].l=l;
b[i].r=r;
b[i].ans=0;
if(b[i].l==b[i].r)
{
b[i].sum=a[l];
return;
}
mid=(l+r)/2;
build(l,mid,2*i);
build(mid+1,r,i*2+1);
b[i].sum=b[i*2].sum+b[i*2+1].sum;
} void pushdown(int i)
{
if(b[i].ans){
b[i*2].ans+=b[i].ans;
b[i*2+1].ans+=b[i].ans;
b[i*2].sum+=b[i].ans*(b[i*2].r-b[i*2].l+1);
b[i*2+1].sum+=b[i].ans*(b[i*2+1].r-b[i*2+1].l+1);
b[i].ans=0;
}
} void add(ll l,ll r,ll value,ll i)
{
ll mid;
if(b[i].l==l && b[i].r==r)
{
b[i].ans=b[i].ans+value;
b[i].sum+=(b[i].r-b[i].l+1)*value;
return;
}
pushdown(i);
b[i].sum+=(r-l+1)*value; //这一句写了,下面第二句就不用写了,是同一个意思
mid=(b[i].l+b[i].r)/2;
if(l>mid)
add(l,r,value,i*2+1);
else if(r<=mid)
add(l,r,value,i*2);
else
{
add(l,mid,value,i*2);
add(mid+1,r,value,i*2+1);
}
//b[i].sum=b[i*2].sum+b[i*2+1].sum; ---2
} ll question(ll l,ll r,ll i)
{
ll mid;
if(b[i].l==l && b[i].r==r)
{
return b[i].sum;
}
pushdown(i);
mid=(b[i].l+b[i].r)/2;
if(l>mid)
return question(l,r,i*2+1);
else if(r<=mid)
return question(l,r,i*2);
else if(l<=mid && r>mid)
return question(l,mid,i*2)+question(mid+1,r,i*2+1); } int main()
{
ll n,m,c,d,e,i,j;
while(scanf("%lld%lld",&n,&m)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%lld",&a[i]);
build(1,n,1);
while(m--)
{
scanf("%s",str);
if(str[0]=='Q')
{
scanf("%lld%lld",&c,&d);
printf("%lld\n",question(c,d,1));
}
else if(str[0]=='C')
{
scanf("%lld%lld%lld",&c,&d,&e);
add(c,d,e,1);
}
}
}
return 0;
}


poj 3468A Simple Problem with Integers的更多相关文章

  1. Poj 3468-A Simple Problem with Integers 线段树,树状数组

    题目:http://poj.org/problem?id=3468   A Simple Problem with Integers Time Limit: 5000MS   Memory Limit ...

  2. POJ 3468A Simple Problem with Integers(线段树区间更新)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 112228 ...

  3. POJ - 3468A Simple Problem with Integers (线段树区间更新,区间查询和)

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of op ...

  4. POJ A Simple Problem with Integers 线段树 lazy-target 区间跟新

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 105742 ...

  5. 3468-A Simple Problem with Integers 线段树(区间增减,区间求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 110077 ...

  6. POJ A Simple Problem with Integers | 线段树基础练习

    #include<cstdio> #include<algorithm> #include<cstring> typedef long long ll; #defi ...

  7. POJ 3468_A Simple Problem with Integers(树状数组)

    完全不知道该怎么用,看书稍微懂了点. 题意: 给定序列及操作,求区间和. 分析: 树状数组可以高效的求出连续一段元素之和或更新单个元素的值.但是无法高效的给某一个区间的所有元素同时加个值. 不能直接用 ...

  8. POJ 3468_A Simple Problem with Integers(线段树)

    题意: 给定序列及操作,求区间和. 分析: 线段树,每个节点维护两个数据: 该区间每个元素所加的值 该区间元素和 可以分为"路过"该区间和"完全覆盖"该区间考虑 ...

  9. poj 3468:A Simple Problem with Integers(线段树,区间修改求和)

    A Simple Problem with Integers Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 58269   ...

随机推荐

  1. 计算机考研复试真题 a+b(大数加法)

    题目描述 实现一个加法器,使其能够输出a+b的值. 输入描述: 输入包括两个数a和b,其中a和b的位数不超过1000位. 输出描述: 可能有多组测试数据,对于每组数据, 输出a+b的值. 示例1 输入 ...

  2. 容器编排系统K8s之HPA资源

    前文我们了解了用Prometheus监控k8s上的节点和pod资源,回顾请参考:https://www.cnblogs.com/qiuhom-1874/p/14287942.html:今天我们来了解下 ...

  3. leetcode 1240. 铺瓷砖(回溯,DFS)

    题目链接 https://leetcode-cn.com/problems/tiling-a-rectangle-with-the-fewest-squares/ 题意: 用尽可能少的正方形瓷砖来铺地 ...

  4. Description Resource Path Location Type Failure to transfer org.apache.maven.plugins:maven-surefire-

    url:https://www.pianshen.com/article/8003307916/ Description Resource Path Location Type Failure to ...

  5. 大数据系列1:一文初识Hdfs

    最近有位同事经常问一些Hadoop的东西,特别是Hdfs的一些细节,有些记得不清楚,所以趁机整理一波. 会按下面的大纲进行整理: 简单介绍Hdfs 简单介绍Hdfs读写流程 介绍Hdfs HA实现方式 ...

  6. 解决Python内CvCapture视频文件格式不支持问题

    解决Python内CvCapture视频文件格式不支持问题 在读取视频文件调用默认的摄像头cv.VideoCapture(0)会出现下面的视频格式问题 CvCapture_MSMF::initStre ...

  7. JVM有哪些垃圾回收器

    JVM 的垃圾回收器 目录 JVM 的垃圾回收器 经典垃圾收集器 Serial 收集器 ParNew 收集器 Parallel Scavenge 收集器 Serial Old 收集器 Parallel ...

  8. Redis 实战 —— 07. 复制、处理故障、事务及性能优化

    复制简介 P61 关系型数据库通常会使用一个主服务器 (master) 向多个从服务器 (slave) 发送更新,并使用从服务器来处理所有读请求. Redis 也采用了同样的方法实现自己的复制特性,并 ...

  9. ORM框架对比以及Mybatis配置文件详解

    ORM框架对比以及Mybatis配置文件详解 0.数据库操作框架的历程 (1) JDBC ​ JDBC(Java Data Base Connection,java数据库连接)是一种用于执行SQL语句 ...

  10. It is thread-safe and idempotent, but not reentrant.

    https://github.com/django/django/blob/master/django/apps/registry.py