题目描述

矮人虽小却喜欢乘坐巨大的轿车,轿车大到可以装下无论多少矮人。某天,N(N≤20)个矮人打算到野外聚餐。为了

集中到聚餐地点,矮人A 有以下两种选择

1)开车到矮人B家中,留下自己的轿车在矮人B家,然后乘坐B的轿车同行

2)直接开车到聚餐地点,并将车停放在聚餐地。虽然矮人的家很大,可以停放无数量轿车,但是聚餐地点却最多只能停放K辆轿车。

现在给你一张加权无向图,它描述了N个矮人的家和聚餐地点,要你求出所有矮人开车的最短总路程。

输入格式

第一行是整数M,接下来M行描述了M条道路。

每行形式如同:S1 S2 x,S1和S2均是由字母组成长度不超过20的字符串

(特别地,当该字符串为”Park”时表示聚餐地点),x是整数,表示从S1到S2的距离。

最后一行包含单独的整数k.

输出格式

仅一行,形式如同:

Total miles driven: xxx

xxx是整数,表示最短总路程。


设Park为1节点。

先不考虑1节点,我们求出去掉1节点之后的图的最小生成树森林。设森林包含x棵树,那么我们从每棵树上都找出一条最短的连向1节点的边连起来。

然后我们可以再给1节点加上k-x条边。扫描1节点连接的所有还没被加入生成树的边,设其边长为p,两个端点为u,v,我们求出u和v在生成树上的路径中的最大边,设其边长为q。如果p-q<0,那么把q删去,把p加上。直到扫描完所有边或者加了k-x条边时,我们便得到了题目所求的生成树。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#define maxn 31
using namespace std; struct edge{
int u,v,w;
bool operator<(const edge &e)const{ return w<e.w; }
}e[maxn*maxn],dp[maxn]; int key[maxn],minedge[maxn];
int fa[maxn],g[maxn][maxn];
bool tree[maxn][maxn];
int n,m,k,ans;
map<string,int> id; inline int read(){
register int x(0),f(1); register char c(getchar());
while(c<'0'||'9'<c){ if(c=='-') f=-1; c=getchar(); }
while('0'<=c&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
} int get(int x){ return fa[x]==x?x:fa[x]=get(fa[x]); }
inline void kruskal(){
sort(e+1,e+1+m);
for(register int i=1;i<=n;i++) fa[i]=i;
for(register int i=1;i<=m;i++){
int u=e[i].u,v=e[i].v,w=e[i].w;
if(u==1||v==1||get(u)==get(v)) continue;
fa[get(u)]=get(v),tree[u][v]=tree[v][u]=true;
ans+=w;
}
} void dfs(int u,int pre){
for(register int i=2;i<=n;i++) if(tree[u][i]){
if(i==pre) continue;
if(dp[i].w==-1){
if(dp[u].w>g[u][i]) dp[i]=dp[u];
else{
dp[i].w=g[u][i],dp[i].u=u,dp[i].v=i;
}
}
dfs(i,u);
}
}
inline void solve(){
register int cnt=0;
for(register int i=2;i<=n;i++) if(g[i][1]!=0x3f3f3f3f){
int col=get(i);
if(g[i][1]<minedge[col]) minedge[col]=g[i][1],key[col]=i;
}
for(register int i=1;i<=n;i++) if(minedge[i]!=0x3f3f3f3f){
cnt++,tree[key[i]][1]=tree[1][key[i]]=true;
ans+=g[1][key[i]];
}
for(register int i=cnt+1;i<=k;i++){
memset(dp,-1,sizeof dp);
dp[1].w=-0x3f3f3f3f;
for(register int j=2;j<=n;j++) if(tree[1][j]) dp[j].w=-0x3f3f3f3f;
dfs(1,1);
int d,mini=0x3f3f3f3f;
for(register int j=2;j<=n;j++) if(mini>g[1][j]-dp[j].w){
mini=g[1][j]-dp[j].w,d=j;
}
if(mini>=0) continue;
tree[1][d]=tree[d][1]=true,tree[dp[d].u][dp[d].v]=tree[dp[d].v][dp[d].u]=false;
ans+=mini;
}
} int main(){
memset(g,0x3f,sizeof g),memset(minedge,0x3f,sizeof minedge);
m=read(),id["Park"]=++n;
for(register int i=1;i<=m;i++){
string a,b; cin>>a>>b;
if(!id[a]) id[a]=++n;
if(!id[b]) id[b]=++n;
e[i].u=id[a],e[i].v=id[b],e[i].w=read();
g[e[i].u][e[i].v]=g[e[i].v][e[i].u]=min(g[e[i].u][e[i].v],e[i].w);
}
k=read();
kruskal(),solve();
printf("Total miles driven: %d\n", ans);
return 0;
}

POJ1629:picnic planning的更多相关文章

  1. POJ1639 - Picnic Planning

    原题链接 Description 给出一张个点的无向边权图并钦定点,求使得点的度不超过的最小生成树. Solution 首先无视掉与相连的所有边,原图会变成若干互不连通的个块.对每个块分别求MST,再 ...

  2. POJ 1639 Picnic Planning 最小k度生成树

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions:11615   Accepted: 4172 D ...

  3. poj1639,uva1537,uvalive2099,scu1622,fzu1761 Picnic Planning (最小限制生成树)

    Picnic Planning Time Limit: 5000MS   Memory Limit: 10000K Total Submissions: 10742   Accepted: 3885 ...

  4. 【POJ 1639】 Picnic Planning (最小k度限制生成树)

    [题意] 有n个巨人要去Park聚会.巨人A和先到巨人B那里去,然后和巨人B一起去Park.B君是个土豪,他家的停车场很大,可以停很多车,但是Park的停车场是比较小.只能停k辆车.现在问你在这个限制 ...

  5. Picnic Planning POJ - 1639(最小k度生成树)

    The Contortion Brothers are a famous set of circus clowns, known worldwide for their incredible abil ...

  6. POJ 1639 Picnic Planning(最小度限制生成树)

    Description The Contortion Brothers are a famous set of circus clowns, known worldwide for their inc ...

  7. poj1639 Picnic Planning 最小度数限制生成树

    题意:若干个人开车要去park聚会,可是park能停的车是有限的,为k.所以这些人要通过先开车到其它人家中,停车,然后拼车去聚会.另外,车的容量是无限的,他们家停车位也是无限的. 求开车总行程最短. ...

  8. poj 1639 Picnic Planning 度限制mst

    https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...

  9. POJ 1639 Picnic Planning:最小度限制生成树

    题目链接:http://poj.org/problem?id=1639 题意: 给你一个无向图,n个节点,m条边,每条边有边权. 让你求一棵最小生成树,同时保证1号节点的度数<=k. 题解: 最 ...

随机推荐

  1. Spring(一)--简介

    一.概述(什么是spring): Spring是分层的Java SE/EE应用full-stack(一站式)轻量级开源框架.他解决的是业务逻辑层和其他各层的松耦合问题,将面向接口的编程思想贯穿整个系统 ...

  2. 点击劫持(Iframe clickJack)练习

    实验内容: 寻找一个合适的网站放入到iframe标签中.实验中测试了包括知网首页及登录界面.淘宝首页及登录界面,百度首页,微信下载界面.发现淘宝登录界面无法放入,会直接跳转到淘宝真实的登录界面,其他的 ...

  3. 图片放大缩小的zoom.js

    1 +function ($) { "use strict"; 2 3 /** 4 * The zoom service 5 */ 6 function ZoomService ( ...

  4. Wordpress Polylang 翻译自定义格式

    WordPress 多语言插件 Polylang 主题函数参考 重要:使用一个函数之前,你必须检查函数是否存在,否则,你的网站可能会在 Polylang 更新之前遇到致命错误(因为 WordPress ...

  5. NET 5 Session、Cookie和Cache的使用

    1.Cookie public IConfiguration Configuration { get; } // This method gets called by the runtime. Use ...

  6. [.NET] - 基础知识 - .NET Overview

    .NET Framework是有一个Framework Class Libray(FCL)和一个Common Language Runtim环境构成的,它 提供一个一致的面向对象的编程环境,而无论对象 ...

  7. spring依赖注入的方式(一)

    为了方便类的管理,spring提供了依赖注入的思想:类的实例化不由程序员控制,而是交给sprig容器进行管理. spring提供了多种类型的注入方式---注解.xml注入: 1  注解注入 有两种:@ ...

  8. 云服务器部署LAMP

    一.安装Apache 1.安装httpd服务: sudo yum install httpd 2.开启服务: sudo systemctl start httpd 3.访问服务器IP成功显示Testi ...

  9. Log4j日志的级别

    log4j规定了默认的几个级别:ALL < trace < debug < info < warn < error < fatal  < OFF 1)级别之间 ...

  10. HashMap的循环姿势你真的掌握了吗?

    hashMap 应该是java程序员工作中用的比较多的一个键值对处理的数据的类型了.这种数据类型一般都会有增删查的方法,今天我们就来看看它的循环方法以前写过一篇关于ArrayList的循环效率问题&l ...