LINK:牛牛与序列

(牛客div1的E题怎么这么水... 还没D难.

定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_i\leq k$

人话解释:一个合法序列 每个数字都在1~k之间 且有两个相邻数字是递增关系两个相邻数字是递减关系。

发现我们枚举某两个位置递增递减再进行计数会重复 而且很难减掉重复方案。这个不能代表元容斥。

考虑总方案-不合法方案。发现不合法方案就两种不增,不降.

显然不增翻转一下就是不降 考虑求出不增的方案数 考虑从前往后放数字且数字大小递减 每个数字都可以分到一些位置。

容易发现是一个隔板法 所以总方案数为C(n+k-1,k-1).

值得注意的是 最后要加上k 因为所有数字都相同时 同时为不增和不降。

这个组合数可以O(k)计算。可以通过此题。

而题解上给了一个dp 这个dp也很显然f[i][j]表示前i个数字使用的最小数字为j的方案数。

最后答案为$\sum_^f[n][i]$ 更扯得是 需要打标发现是上述的组合数 再接一个数学归纳法证明。

我觉得很麻烦 可能正因为如此 出题人才把这道题放到E吧.

const ll MAXN=100010;
ll n,k,T;
ll ans;
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(T);
while(T--)
{
get(n);get(k);
ans=ksm(k,n%(mod-1))+k;
ll cnt=1,ww=1;
fep(n+k-1,n+1,i)cnt=cnt*i%mod,ww=ww*(i-n)%mod;
ww=ksm(ww,mod-2);
putl(((ans-cnt*ww%mod*2%mod)%mod+mod)%mod);
}
return 0;
}

牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp的更多相关文章

  1. 牛客练习赛43 Tachibana Kanade Loves Game (简单容斥)

    链接:https://ac.nowcoder.com/acm/contest/548/F来源:牛客网 题目描述 立华奏是一个天天打比赛的萌新. 省选将至,萌新立华奏深知自己没有希望进入省队,因此开始颓 ...

  2. Codeforces Round 450 D 隔板法+容斥

    题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...

  3. 牛客挑战赛39 D 牛牛的数学题 NTT FMT FWT

    LINK:牛牛的数学题 题目看起来很不可做的样子. 但是 不难分析一下i,j之间的关系. 对于x=i|j且i&j==0, i,j一定是x的子集 我们可以暴力枚举子集来处理x这个数组. 考虑 x ...

  4. 牛客练习赛26:D-xor序列(线性基)

    链接:牛客练习赛26:D-xor序列(线性基) 题意:小a有n个数,他提出了一个很有意思的问题:他想知道对于任意的x, y,能否将x与这n个数中的任意多个数异或任意多次后变为y 题解:线性基 #inc ...

  5. 牛客OI测试赛 C 序列 思维

    链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...

  6. 牛客训练21674——牛牛与LCM

    Problem 链接:https://ac.nowcoder.com/acm/problem/21674 来源:牛客网 牛牛最近在学习初等数论,他的数学老师给他出了一道题,他觉得太简单了, 懒得做,于 ...

  7. 牛客练习赛39 B.选点

    链接:https://ac.nowcoder.com/acm/contest/368/B 来源:牛客网 题目描述 有一棵n个节点的二叉树,1为根节点,每个节点有一个值wi.现在要选出尽量多的点. 对于 ...

  8. 牛客练习赛26 D xor序列 (线性基)

    链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...

  9. 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)

    点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...

随机推荐

  1. 微软全球资深副总裁对 VS Code 黑宝书的推荐序!VS Code 月活用户已达 1200 万!

    前不久,首本 VS Code 中文书终于问世了! 在本书出版之前,我很高兴能邀请到微软全球资深副总裁 Julia Liuson 为本书写推荐序!下面,我们就来看一下 Julia 所写的推荐序的完整内容 ...

  2. 结合SpEL使用@Value-基于配置文件或非配置的文件的值注入-Spring Boot

    本文主要介绍Spring @Value 注解注入属性值的使用方法的分析,文章通过示例代码非常详细地介绍,对于每个人的学习或工作都有一定的参考学习价值 在使用spring框架的项目中,@Value是经常 ...

  3. 用Helm部署Kubernetes应用,支持多环境部署与版本回滚

    1 前言 Helm是优秀的基于Kubernetes的包管理器.利用Helm,可以快速安装常用的Kubernetes应用,可以针对同一个应用快速部署多套环境,还可以实现运维人员与开发人员的职责分离.现在 ...

  4. Pop!_OS安装与配置(四):GNOME插件篇

    Pop!_OS安装与配置(四):GNOME插件篇 #0x0 效果图 #0x1 自动安装(不保证成功性) #0x2 OpenWeather #0x3 Topicons Plus #0x4 System- ...

  5. 自定义Mybatis自动生成代码规则

    前言 大家都清楚mybatis-generate-core 这个工程提供了获取表信息到生成model.dao.xml这三层代码的一个实现,但是这往往有一个痛点,比如需求来了,某个表需要增加字段,肯定需 ...

  6. Python函数05/内置函数/闭包

    Python函数05/内置函数/闭包 目录 Python函数05/内置函数/闭包 内容大纲 1.内置函数(二) 2.匿名函数及内置函数(重要) 3.闭包 4.今日总结 5.今日练习 内容大纲 1.内置 ...

  7. A Mountaineer 最详细的解题报告

    题目来源:A Mountaineer (不知道该链接是否可以直接访问,所以将题目复制下来了) 题目如下: D - A Mountaineer Time limit : 2sec / Stack lim ...

  8. Python 实现邮件发送功能(初级)

    在我们日常项目中,会经常使用到邮件的发送功能,如何利用Python发送邮件也是一项必备的技能.本文主要讲述利用Python来发送邮件的一些基本操作. 本章主要包含知识点: 邮件发送原理简述即常用smt ...

  9. MVC + EFCore 项目实战 - 数仓管理系统4 – 需求分解

    上次课程我们完成了项目基本的UI风格配置. 现在就开始进入我们的需求开发,我们先捋一下需求. 一.总体需求说明 项目背景第一篇文章已有介绍,我们回顾一下. 这是一个数据管理"工具类" ...

  10. Java File类基础解析 1

    Java File类基础解析 1 File类的构造方法 public File(String pathname) :通过给定的路径名字符转换为抽象路径名来创建新的File实例 String path ...