牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp
LINK:牛牛与序列
(牛客div1的E题怎么这么水... 还没D难.
定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_i\leq k$
人话解释:一个合法序列 每个数字都在1~k之间 且有两个相邻数字是递增关系两个相邻数字是递减关系。
发现我们枚举某两个位置递增递减再进行计数会重复 而且很难减掉重复方案。这个不能代表元容斥。
考虑总方案-不合法方案。发现不合法方案就两种不增,不降.
显然不增翻转一下就是不降 考虑求出不增的方案数 考虑从前往后放数字且数字大小递减 每个数字都可以分到一些位置。
容易发现是一个隔板法 所以总方案数为C(n+k-1,k-1).
值得注意的是 最后要加上k 因为所有数字都相同时 同时为不增和不降。
这个组合数可以O(k)计算。可以通过此题。
而题解上给了一个dp 这个dp也很显然f[i][j]表示前i个数字使用的最小数字为j的方案数。
最后答案为$\sum_^f[n][i]$ 更扯得是 需要打标发现是上述的组合数 再接一个数学归纳法证明。
我觉得很麻烦 可能正因为如此 出题人才把这道题放到E吧.
const ll MAXN=100010;
ll n,k,T;
ll ans;
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(T);
while(T--)
{
get(n);get(k);
ans=ksm(k,n%(mod-1))+k;
ll cnt=1,ww=1;
fep(n+k-1,n+1,i)cnt=cnt*i%mod,ww=ww*(i-n)%mod;
ww=ksm(ww,mod-2);
putl(((ans-cnt*ww%mod*2%mod)%mod+mod)%mod);
}
return 0;
}
牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp的更多相关文章
- 牛客练习赛43 Tachibana Kanade Loves Game (简单容斥)
链接:https://ac.nowcoder.com/acm/contest/548/F来源:牛客网 题目描述 立华奏是一个天天打比赛的萌新. 省选将至,萌新立华奏深知自己没有希望进入省队,因此开始颓 ...
- Codeforces Round 450 D 隔板法+容斥
题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...
- 牛客挑战赛39 D 牛牛的数学题 NTT FMT FWT
LINK:牛牛的数学题 题目看起来很不可做的样子. 但是 不难分析一下i,j之间的关系. 对于x=i|j且i&j==0, i,j一定是x的子集 我们可以暴力枚举子集来处理x这个数组. 考虑 x ...
- 牛客练习赛26:D-xor序列(线性基)
链接:牛客练习赛26:D-xor序列(线性基) 题意:小a有n个数,他提出了一个很有意思的问题:他想知道对于任意的x, y,能否将x与这n个数中的任意多个数异或任意多次后变为y 题解:线性基 #inc ...
- 牛客OI测试赛 C 序列 思维
链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...
- 牛客训练21674——牛牛与LCM
Problem 链接:https://ac.nowcoder.com/acm/problem/21674 来源:牛客网 牛牛最近在学习初等数论,他的数学老师给他出了一道题,他觉得太简单了, 懒得做,于 ...
- 牛客练习赛39 B.选点
链接:https://ac.nowcoder.com/acm/contest/368/B 来源:牛客网 题目描述 有一棵n个节点的二叉树,1为根节点,每个节点有一个值wi.现在要选出尽量多的点. 对于 ...
- 牛客练习赛26 D xor序列 (线性基)
链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...
- 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)
点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...
随机推荐
- 5.scrapy过滤器
scrapy过滤器 1. 过滤器 当我们在爬取网页的时候可能会遇到一个调转连接会在不同页面出现,这个时候如果我们的爬虫程序不能识别出 该链接是已经爬取过的话,就会造成一种重复不必要的爬取.所以我们要对 ...
- Redis做为缓存的几个问题
缓存理流程: 前台请求,后台先从缓存中取数据,取到直接返回结果,取不到时从数据库中取,数据库取到更新缓存,并返回结果,数据库也没取到,那直接返回空结果. 1.缓存雪崩 解决方案3:如果缓存数据库是分布 ...
- 零拷贝(Zero-copy) 浅析及其应用
相信大家都有过面经历,如果跟面试官聊到了操作系统,聊到了文件操作,可能会问你普通的文件读写流程,它有什么缺点,你知道有什么改进的措施.我们经常听说 零拷贝,每次可能只是背诵一些面试要点就过去了,今天我 ...
- Let's GO(一)
近来开始学Go,留此博客以记录学习过程,顺便鞭策自己更加努力. 人生苦短,Let's GO! Let's GO(一) Let's GO(二) Let's GO(三) Let's GO(四) 简单介绍 ...
- Python 图像处理 OpenCV (13): Scharr 算子和 LOG 算子边缘检测技术
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python面向对象02/类的空间问题、类与对象之间的关系、类与类之间的关系
Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 目录 Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 1. 类的空间问题 2. 类与对象之间 ...
- Hangfire实战二——为DashBoard页面添加权限认证
概述 Hangfire Dashboard为我们提供了可视化的对后台任务进行管理的界面,我们可以直接在这个页面上对定时任务进行删除.立即执行等操作,如下图所示: 默认情况下,这个页面只能在部署Hang ...
- Java常用API(Scanner类)
Java常用API( Scanner类)1 1.Scanner类 首先给大家介绍一下什么是JavaAPI API(Application Programming Interface),应用程序编程接口 ...
- void operator()()的功能
在学习多线程的时候看到这样的一段代码,为什么要重载()呢?真有这个必要吗? #include <iostream> #include <thread> class Counte ...
- Python Ethical Hacking - Basic Concetion
What is Hacking? Gaining unauthorized access. Hackers? 1.Black-hat Hackers 2.White-hat Hackers 3.Gre ...