LINK:牛牛与序列

(牛客div1的E题怎么这么水... 还没D难.

定义一个序列合法 当且仅当存在一个位置i满足 $a_i>a_,a_j<a_$且对于所有的位置i,$1 \leq a_i\leq k$

人话解释:一个合法序列 每个数字都在1~k之间 且有两个相邻数字是递增关系两个相邻数字是递减关系。

发现我们枚举某两个位置递增递减再进行计数会重复 而且很难减掉重复方案。这个不能代表元容斥。

考虑总方案-不合法方案。发现不合法方案就两种不增,不降.

显然不增翻转一下就是不降 考虑求出不增的方案数 考虑从前往后放数字且数字大小递减 每个数字都可以分到一些位置。

容易发现是一个隔板法 所以总方案数为C(n+k-1,k-1).

值得注意的是 最后要加上k 因为所有数字都相同时 同时为不增和不降。

这个组合数可以O(k)计算。可以通过此题。

而题解上给了一个dp 这个dp也很显然f[i][j]表示前i个数字使用的最小数字为j的方案数。

最后答案为$\sum_^f[n][i]$ 更扯得是 需要打标发现是上述的组合数 再接一个数学归纳法证明。

我觉得很麻烦 可能正因为如此 出题人才把这道题放到E吧.

const ll MAXN=100010;
ll n,k,T;
ll ans;
inline ll ksm(ll b,ll p)
{
ll cnt=1;
while(p)
{
if(p&1)cnt=cnt*b%mod;
b=b*b%mod;p=p>>1;
}
return cnt;
}
signed main()
{
freopen("1.in","r",stdin);
get(T);
while(T--)
{
get(n);get(k);
ans=ksm(k,n%(mod-1))+k;
ll cnt=1,ww=1;
fep(n+k-1,n+1,i)cnt=cnt*i%mod,ww=ww*(i-n)%mod;
ww=ksm(ww,mod-2);
putl(((ans-cnt*ww%mod*2%mod)%mod+mod)%mod);
}
return 0;
}

牛客挑战赛 39 牛牛与序列 隔板法 容斥 dp的更多相关文章

  1. 牛客练习赛43 Tachibana Kanade Loves Game (简单容斥)

    链接:https://ac.nowcoder.com/acm/contest/548/F来源:牛客网 题目描述 立华奏是一个天天打比赛的萌新. 省选将至,萌新立华奏深知自己没有希望进入省队,因此开始颓 ...

  2. Codeforces Round 450 D 隔板法+容斥

    题意: Count the number of distinct sequences a1, a2, ..., an (1 ≤ ai) consisting of positive integers ...

  3. 牛客挑战赛39 D 牛牛的数学题 NTT FMT FWT

    LINK:牛牛的数学题 题目看起来很不可做的样子. 但是 不难分析一下i,j之间的关系. 对于x=i|j且i&j==0, i,j一定是x的子集 我们可以暴力枚举子集来处理x这个数组. 考虑 x ...

  4. 牛客练习赛26:D-xor序列(线性基)

    链接:牛客练习赛26:D-xor序列(线性基) 题意:小a有n个数,他提出了一个很有意思的问题:他想知道对于任意的x, y,能否将x与这n个数中的任意多个数异或任意多次后变为y 题解:线性基 #inc ...

  5. 牛客OI测试赛 C 序列 思维

    链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...

  6. 牛客训练21674——牛牛与LCM

    Problem 链接:https://ac.nowcoder.com/acm/problem/21674 来源:牛客网 牛牛最近在学习初等数论,他的数学老师给他出了一道题,他觉得太简单了, 懒得做,于 ...

  7. 牛客练习赛39 B.选点

    链接:https://ac.nowcoder.com/acm/contest/368/B 来源:牛客网 题目描述 有一棵n个节点的二叉树,1为根节点,每个节点有一个值wi.现在要选出尽量多的点. 对于 ...

  8. 牛客练习赛26 D xor序列 (线性基)

    链接:https://ac.nowcoder.com/acm/contest/180/D 来源:牛客网 xor序列 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他 ...

  9. 【牛客挑战赛30D】小A的昆特牌(组合问题抽象到二维平面)

    点此看题面 大致题意: 有\(S\)张无编号的牌,可以将任意张牌锻造成\(n\)种步兵或\(m\)种弩兵中的一种,求最后步兵数量大于等于\(l\)小于等于\(r\)的方案数. 暴力式子 首先我们来考虑 ...

随机推荐

  1. Evacuation,题解

    题目: 题意: 有人,门(只有边上有,且1s只能出去一个人),和墙,每s人可移动一个格子,问多少秒所有人可以逃出,逃不出输出“impossible” 分析: 首先,我们先想着样一个问题,如果这个人在某 ...

  2. 线下---复习day04---作业

    1 学的不好的同学:用ajax提交一个json格式数据,返回一个json格式数据,console.log打印出来 2 通过ajax上传一个文件并保存起来,前端接收到,弹窗说上传成功 urls.py f ...

  3. Kafka入门(1):概述

    摘要 在本文中,我将从为什么需要消息队列开始讲起,举两个小例子,跟你聊聊目前消息队列的一些使用场景. 比如消息队列在复杂系统中的解耦,又比如消息队列在高并发下的场景如果让流量变得更平缓. 随后我会跟你 ...

  4. Jmeter(十六) - 从入门到精通 - JMeter前置处理器(详解教程)

    1.简介 前置处理器是在发出“取样器请求”之前执行一些操作.如果将前置处理器附加到取样器元件,则它将在该取样器元件运行之前执行.前置处理器最常用于在取样器请求运行前修改其设置,或更新未从响应文本中提取 ...

  5. vue项目发布时去除console语句

    在vue.config.js中添加下面的代码即可 // vue-cli version > 3 modeule.exports = { configureWebpack: config => ...

  6. JVM 专题四:类加载子系统(二)双亲委派机制

    2. 双亲委派机制 2.1 双亲委派机制工作原理 2.1.1 原理 Java虚拟机对class文件采用的是按需加载的方式,也就是说当需要使用该类时才会将它的class文件加载到内存,生成class对象 ...

  7. 数据可视化之PowerQuery篇(十三)Power BI总计行错误,这个技巧一定要掌握

    https://zhuanlan.zhihu.com/p/102567707 ​前一段介绍过一个客户购买频次统计的案例: Power BI 数据分析应用:客户购买频次分布. 我并没有在文章中显示总计行 ...

  8. 数据可视化实例(十一): 矩阵图(matplotlib,pandas)

    矩阵图 https://datawhalechina.github.io/pms50/#/chapter9/chapter9 导入所需要的库 import numpy as np # 导入numpy库 ...

  9. Java开发中的eclispe常用快捷键&全部快捷键

    Java开发中的eclispe常用快捷键&全部快捷键 Ctrl+1 快速修复(经典快捷键)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ ...

  10. IDEA 2020.1 查看内存使用情况