Power Network
Time Limit: 2000MS   Memory Limit: 32768K
Total Submissions: 27282   Accepted: 14179

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= pmax(u) of power, may consume an amount 0 <= c(u) <= min(s(u),cmax(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= lmax(u,v) of power delivered by u to v. Let Con=Σuc(u) be the power consumed in the net. The problem is to compute the maximum value of Con. 

An example is in figure 1. The label x/y of power station u shows that p(u)=x and pmax(u)=y. The label x/y of consumer u shows that c(u)=x and cmax(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and lmax(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6. 

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of lmax(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of pmax(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of cmax(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

Source

 
————————————————————————————————————————————————————————
 
网络流最大流DINIC基础题目,需要注意的有以下两点
1、sscanf的应用
2、scanf()是否有输入一定要用==,这里犯了点小错误用了“

while(scanf("%d%d%d%d",&n,&np,&nc,&m))

这样是不对的,应当为

while(scanf("%d%d%d%d",&n,&np,&nc,&m)==4)

——————————————————————————————————————————————————————————
  1 #include<cstdio>
2 #include<iostream>
3 #include<cstring>
4 #include<vector>
5 #include<queue>
6
7 using namespace std;
8 int n,np,nc,m;
9 int map[105][105];
10 bool vis[105];
11 int lays[105];
12 bool bfs()
13 {
14 queue<int>q;
15 memset(lays,-1,sizeof(lays));
16 q.push(n);
17 lays[n]=0;
18 while(!q.empty())
19 {
20 int u=q.front();
21 q.pop();
22 for(int i=0;i<=n+1;i++)
23 if(map[u][i]>0&&lays[i]==-1)
24 {
25 lays[i]=lays[u]+1;
26 if(i==n+1)return 1;
27 else
28 {
29 q.push(i);
30 }
31 }
32 }
33 return 0;
34 }
35 int dinic()
36 {
37 vector<int>q;
38 int maxf=0;
39 while(bfs())
40 {
41 q.push_back(n);
42 memset(vis,0,sizeof(vis));
43 vis[n]=1;
44 while(!q.empty())
45 {
46 int nd=q.back();
47 if(nd==n+1)
48 {
49 int minx=0x7fffffff,minn;
50 for(int i=1;i<q.size();i++)
51 {
52 int u=q[i-1],v=q[i];
53 if(map[u][v]<minx)
54 {
55 minx=map[u][v];
56 minn=u;
57 }
58 }
59 maxf+=minx;
60 for(int i=1;i<q.size();i++)
61 {
62 int u=q[i-1],v=q[i];
63 map[u][v]-=minx;
64 map[v][u]+=minx;
65 }
66 while(!q.empty()&&q.back()!=minn)
67 {
68 vis[q.back()]=0;
69 q.pop_back();
70 }
71 }
72 else
73 {
74 int i;
75 for(i=0;i<=n+1;i++)
76 {
77 if(map[nd][i]>0&&!vis[i]&&lays[i]==lays[nd]+1)
78 {
79 vis[i]=1;
80 q.push_back(i);
81 break;
82 }
83 }
84 if(i>n+1)q.pop_back();
85 }
86 }
87 }
88 return maxf;
89 }
90 int main()
91 {
92 char s[35];
93 while(scanf("%d%d%d%d",&n,&np,&nc,&m)==4)
94 {
95 memset(map,0,sizeof(map));
96 for(int i=0;i<m;i++)
97 {
98 int u,v,l;
99 scanf("%s",s);
100 sscanf(s,"(%d,%d)%d",&u,&v,&l);
101 map[u][v]+=l;
102 }
103 for(int i=0;i<np;i++)
104 {
105 int v,l;
106 scanf("%s",s);
107 sscanf(s,"(%d)%d",&v,&l);
108 map[n][v]+=l;
109 }
110 for(int i=0;i<nc;i++)
111 {
112 int v,l;
113 scanf("%s",s);
114 sscanf(s,"(%d)%d",&v,&l);
115 map[v][n+1]+=l;
116 }
117 printf("%d\n",dinic());
118 }
119
120 return 0;
121 }
 

power network 电网——POJ1459的更多相关文章

  1. POJ1459 Power Network —— 最大流

    题目链接:https://vjudge.net/problem/POJ-1459 Power Network Time Limit: 2000MS   Memory Limit: 32768K Tot ...

  2. poj1459 Power Network (多源多汇最大流)

    Description A power network consists of nodes (power stations, consumers and dispatchers) connected ...

  3. POJ1459 Power Network(网络最大流)

                                         Power Network Time Limit: 2000MS   Memory Limit: 32768K Total S ...

  4. POJ1459 - Power Network

    原题链接 题意简述 原题看了好几遍才看懂- 给出一个个点,条边的有向图.个点中有个源点,个汇点,每个源点和汇点都有流出上限和流入上限.求最大流. 题解 建一个真 · 源点和一个真 · 汇点.真 · 源 ...

  5. POJ1459:Power Network(多源点多汇点的最大流)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 31086   Accepted: 15986 题 ...

  6. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  7. Power Network(网络流最大流 & dinic算法 + 优化)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 24019   Accepted: 12540 D ...

  8. Power Network 分类: POJ 2015-07-29 13:55 3人阅读 评论(0) 收藏

    Power Network Time Limit: 2000MS Memory Limit: 32768K Total Submissions: 24867 Accepted: 12958 Descr ...

  9. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

随机推荐

  1. SSRF之利用dict和gopher吊打Redis

    SSRF之利用dict和gopher吊打Redis 写在前面 SSRF打Redis也是老生常谈的东西了,这里复现学习一下之前在xz看到某师傅写的关于SSRF利用dict和gopher打内网服务的文章, ...

  2. 这是一篇SQL注入文章

    目录 注入原理: 1.寻找注入点的方式或注入的地方可能包括. 2.注入点判断方法. 3.注入分类. 数字型: 字符型: 搜索型: XX型(也叫其他型): 4.注入提交方式. 5.注入攻击类型与方式. ...

  3. hashmap有一个loadFactory为什么是0.75从泊松分布解析看看

    简述: 写这篇文章是看到网上的一篇面试题,有面试官问hashmap有一个loadFactory为什么是0.75  我先解释一下 0.75上下文,当一个hashmap初始数组大小暂时不考虑扩容情况,初始 ...

  4. TurtleBot3使用课程-第一节a(北京智能佳)

    目录 1.ROS设置(远程PC) 2 1.1 ROS安装和设置 2 1.1.1 设置source.list 2 1.1.2 键设置 2 1.1.3 ROS安装 2 1.1.4安装包构建的依赖关系 2 ...

  5. 第14章节 BJROBOT karto 算法构建地图【ROS全开源阿克曼转向智能网联无人驾驶车】

    建地图前说明:请确保你的小车已经校正好 IMU.角速度.线速度,虚拟机配置好 ROS 网络的前提进行,否则会造成构建地图无边界.虚拟机端无法正常收到小车主控端发布的话题数据等异常情况!! 1.把小车平 ...

  6. 有哪些适合个人开发的微信小程序

    微信小程序提供了一个简单.高效的应用开发框架和丰富的组件及API,帮助开发者在微信中开发具有原生 APP 体验的服务. 微信小程序支持采用云开发模式,无需后台服务,十分的方便快捷,适合个人开发一些工具 ...

  7. MVC和MVVM的差别

    MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写,一种软件设计典范,用一种业务逻辑.数据.界面显示分离的方法组织代码 ...

  8. 【剑指 Offer】09.用两个栈实现队列

    题目描述 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead , 分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,del ...

  9. Openstack 启动一个实例(九)

    Openstack 启动一个实例(九) 创建一个提供者网络: # 创建一个提供者网络: openstack network create --share --external --provider-p ...

  10. wpf 中 Ellipse 对象对动画性能的影响

    vs2019 .NetFramework 4.8 win10-64 1909 接手一个wpf项目,某窗口中包含大量的 Shape 对象(线,矩形,圆形等). 这些内容要匀速的向左平移,类似于游戏&qu ...