package com.test.tree;

public class BinarySearchTree<T extends Comparable<? super T>> {
/*定义二叉树的节点*/
private class BinaryNode<T>{
public T data;
public BinaryNode<T> lt;
public BinaryNode<T> rt; public BinaryNode(T data) {
this(data, null, null);
}
public BinaryNode(T data, BinaryNode<T> lt, BinaryNode<T> rt) {
this.data = data;
this.lt = lt;
this.rt = rt;
}
} private BinaryNode<T> root; //定义二叉查找树的根节点 public BinarySearchTree(){ //初始化二叉查找树
root = null;
} public void makeEmpty(){ //树清空
root = null;
} public boolean isEmpty(){ //树判空
return root == null;
} public boolean contains(T x){ //判断是否包含某个值
return contains(root, x);
}
public boolean contains(BinaryNode<T> root, T x){
if(root == null){
return false;
}
int compare = x.compareTo(root.data);
if(compare == 0){
return true;
}else if(compare < 0){
contains(root.lt, x);
}else {
contains(root.rt, x);
}
return false;
} public T findMin(){ //获得树中最小值
if(!isEmpty()){
return findMin(root).data;
}
return null;
}
public T findMax(){ //获得树中最大值
if(!isEmpty()){
return findMax(root).data;
}
return null;
} public void insert(T data){ //插入数据
root = insert(data, root);
} public void remove(T data){
root = remove(data, root);
} public void printTree(){
if(root == null){
System.out.println("empty tree");
}else{
printTree(root);
}
}
/*中序遍历*/
public void printTree(BinaryNode<T> t){
if(t != null){
printTree(t.lt);
System.out.print(t.data+"、");
printTree(t.rt);
}
}
/**
* 删除查找树的某个节点,首先用要删除节点的右子树中最小值替换节点值,
* 再从右子树中删除此节点,递归调用
* */
public BinaryNode<T> remove(T data, BinaryNode<T> t){
if(t == null){
return t;
}
int compare = data.compareTo(t.data); if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = remove(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = remove(data, t.rt);
}else if(t.lt != null && t.rt != null){
t.data = findMin(t.rt).data; //将右子树中的最小值赋给要删除的节点
t.rt = remove(t.data, t.rt);
}else{
t = t.lt == null? t.rt:t.lt;
}
return t;
}
public BinaryNode<T> insert(T data, BinaryNode<T> t){
if(t == null){
return new BinaryNode<T>(data, null, null);
}
int compare = data.compareTo(t.data);
if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = insert(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = insert(data, t.rt);
}else{
}
return t;
}
public BinaryNode<T> findMin(BinaryNode<T> t){
if(t == null){
return t;
}else if(t.lt == null){ //查找树的左边比节点值小,找到最左边的节点即可
return t;
}else{
return findMin(t.lt);
}
} public BinaryNode<T> findMax(BinaryNode<T> t){
if(t == null){
return null;
}else if(t.rt == null){ //查找树的右边比节点值大,找到最右边的节点即可
return t;
}
return findMax(t.rt);
} public static void main(String[] args) {
BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<Integer>();
binarySearchTree.insert(8);
binarySearchTree.insert(4);
binarySearchTree.insert(6);
binarySearchTree.insert(3);
binarySearchTree.insert(14);
binarySearchTree.insert(10);
System.out.println("最小值: "+binarySearchTree.findMin());
System.out.println("最大值: "+binarySearchTree.findMax());
binarySearchTree.printTree();
binarySearchTree.remove(8);
System.out.println();
binarySearchTree.printTree();
}
}

二叉查找树--java的更多相关文章

  1. 数据结构实现(四)二叉查找树java实现

    转载 http://www.cnblogs.com/CherishFX/p/4625382.html 二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树 ...

  2. 递归的二叉查找树Java实现

    package practice; public class TestMain { public static void main(String[] args) { int[] ao = {50,18 ...

  3. 二叉查找树 Java实现

    定义: 一棵二叉查找树是一棵二叉树,每个节点都含有一个Comparable的键(以及对应的值). 每个节点的键都大于左子树中任意节点的键而小于右子树中任意节点的键. 树的术语: Name Functi ...

  4. LeetCode96_Unique Binary Search Trees(求1到n这些节点能够组成多少种不同的二叉查找树) Java题解

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

  5. Spark案例分析

    一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  6. 数据结构笔记--二叉查找树概述以及java代码实现

    一些概念: 二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X. 二叉查找树是java的TreeSet和TreeMap类实现的基础. 由于树的递 ...

  7. Java for LintCode 验证二叉查找树

    给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值.    节点的右子树中的值要严格大于该节点的值.    左右子树也必须是二叉查找树. ...

  8. 二叉查找树的Java实现

    为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思路: [1] 关于容器与封装.封装,是一种非常重要的系统设计思想:无论是面向过程的函数,还 ...

  9. 二叉查找树(三)之 Java的实现

    概要 在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本".这一章写一写二叉查找树的Java实现版本. 目录 1. 二叉树查找树2. 二叉查找树的 ...

随机推荐

  1. Linux查找命令find、locate、whereis、which、type

    find:查找指定下目录的文件 -empty:查找空文件 -name:按名字查找 -type f(文件 or d:目录):按类型查找

  2. python面试题(三)

    1 一行代码实现9*9乘法表 print ("\n".join("\t".join(["%s*%s=%s" %(x,y,x*y) for y ...

  3. ORACLE中RECORD、VARRAY、TABLE的使用具体解释

     1     说明 1.1       RECORD 定义记录数据类型. 它类似于C语言中的结构数据类型(STRUCTURE).PL/SQL提供了将几个相关的.分离的.基本数据类型的变量组成一个总 ...

  4. 0107-将Monolith重构为微服务

    重构到微服务的概述 将单一应用程序转换为微服务的过程是应用程序现代化的一种形式.这是开发人员几十年来一直在做的事情.因此,在将应用程序重构为微服务时,我们可以重用一些想法. 一个不使用的策略是重写“B ...

  5. F-02 创建财务凭证BAPI

    **.获取抬头参数, documentheader **.项目参数 accountgl = lt_acgl"G/L account item accountreceivable = lt_a ...

  6. 使用C# .NET 将结构数组绑定到 Windows 窗体的方法

      本任务的内容 概要 要求 设计结构 向数组添加结构实例 将结构成员绑定到窗体控件 提供浏览数组的方式 分步示例 参考 概要 本文介绍如何向 Windows 窗体绑定结构数组. 该示例由一个 Win ...

  7. Nexus Repository Manager 使用笔记

    在使用maven是,因内外网限制往往需要配置自由的maven库,小编看见网上教程数不胜数,遍主动试试 以下是下载地址 : http://www.sonatype.com/download-oss-so ...

  8. 笔记:git和码云

    背景:之前使用GitHub,无奈网速原因,有时候竟无法连接,搜索解决方案而又鱼龙混杂淹没在信息的海洋. 于是尝试码云,界面简单,全中文,用起来很是顺手. 码云使用git来管理,操作上都是git的基本指 ...

  9. P4234 最小差值生成树

    题目 P4234 最小差值生成树 做法 和这题解法差不多,稍微变了一点,还不懂就直接看代码吧 \(update(2019.2):\)还是具体说一下吧,排序,直接加入,到了成环情况下,显然我们要把此边代 ...

  10. HTML5模拟衣服撕扯动画

    在线演示 本地下载