package com.test.tree;

public class BinarySearchTree<T extends Comparable<? super T>> {
/*定义二叉树的节点*/
private class BinaryNode<T>{
public T data;
public BinaryNode<T> lt;
public BinaryNode<T> rt; public BinaryNode(T data) {
this(data, null, null);
}
public BinaryNode(T data, BinaryNode<T> lt, BinaryNode<T> rt) {
this.data = data;
this.lt = lt;
this.rt = rt;
}
} private BinaryNode<T> root; //定义二叉查找树的根节点 public BinarySearchTree(){ //初始化二叉查找树
root = null;
} public void makeEmpty(){ //树清空
root = null;
} public boolean isEmpty(){ //树判空
return root == null;
} public boolean contains(T x){ //判断是否包含某个值
return contains(root, x);
}
public boolean contains(BinaryNode<T> root, T x){
if(root == null){
return false;
}
int compare = x.compareTo(root.data);
if(compare == 0){
return true;
}else if(compare < 0){
contains(root.lt, x);
}else {
contains(root.rt, x);
}
return false;
} public T findMin(){ //获得树中最小值
if(!isEmpty()){
return findMin(root).data;
}
return null;
}
public T findMax(){ //获得树中最大值
if(!isEmpty()){
return findMax(root).data;
}
return null;
} public void insert(T data){ //插入数据
root = insert(data, root);
} public void remove(T data){
root = remove(data, root);
} public void printTree(){
if(root == null){
System.out.println("empty tree");
}else{
printTree(root);
}
}
/*中序遍历*/
public void printTree(BinaryNode<T> t){
if(t != null){
printTree(t.lt);
System.out.print(t.data+"、");
printTree(t.rt);
}
}
/**
* 删除查找树的某个节点,首先用要删除节点的右子树中最小值替换节点值,
* 再从右子树中删除此节点,递归调用
* */
public BinaryNode<T> remove(T data, BinaryNode<T> t){
if(t == null){
return t;
}
int compare = data.compareTo(t.data); if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = remove(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = remove(data, t.rt);
}else if(t.lt != null && t.rt != null){
t.data = findMin(t.rt).data; //将右子树中的最小值赋给要删除的节点
t.rt = remove(t.data, t.rt);
}else{
t = t.lt == null? t.rt:t.lt;
}
return t;
}
public BinaryNode<T> insert(T data, BinaryNode<T> t){
if(t == null){
return new BinaryNode<T>(data, null, null);
}
int compare = data.compareTo(t.data);
if(compare < 0){
//插入值比根节点的值小,插入到左字数
t.lt = insert(data, t.lt);
}else if(compare > 0){
//插入值比根节点的值小,插入到左字数
t.rt = insert(data, t.rt);
}else{
}
return t;
}
public BinaryNode<T> findMin(BinaryNode<T> t){
if(t == null){
return t;
}else if(t.lt == null){ //查找树的左边比节点值小,找到最左边的节点即可
return t;
}else{
return findMin(t.lt);
}
} public BinaryNode<T> findMax(BinaryNode<T> t){
if(t == null){
return null;
}else if(t.rt == null){ //查找树的右边比节点值大,找到最右边的节点即可
return t;
}
return findMax(t.rt);
} public static void main(String[] args) {
BinarySearchTree<Integer> binarySearchTree = new BinarySearchTree<Integer>();
binarySearchTree.insert(8);
binarySearchTree.insert(4);
binarySearchTree.insert(6);
binarySearchTree.insert(3);
binarySearchTree.insert(14);
binarySearchTree.insert(10);
System.out.println("最小值: "+binarySearchTree.findMin());
System.out.println("最大值: "+binarySearchTree.findMax());
binarySearchTree.printTree();
binarySearchTree.remove(8);
System.out.println();
binarySearchTree.printTree();
}
}

二叉查找树--java的更多相关文章

  1. 数据结构实现(四)二叉查找树java实现

    转载 http://www.cnblogs.com/CherishFX/p/4625382.html 二叉查找树的定义: 二叉查找树或者是一颗空树,或者是一颗具有以下特性的非空二叉树: 1. 若左子树 ...

  2. 递归的二叉查找树Java实现

    package practice; public class TestMain { public static void main(String[] args) { int[] ao = {50,18 ...

  3. 二叉查找树 Java实现

    定义: 一棵二叉查找树是一棵二叉树,每个节点都含有一个Comparable的键(以及对应的值). 每个节点的键都大于左子树中任意节点的键而小于右子树中任意节点的键. 树的术语: Name Functi ...

  4. LeetCode96_Unique Binary Search Trees(求1到n这些节点能够组成多少种不同的二叉查找树) Java题解

    题目: Given n, how many structurally unique BST's (binary search trees) that store values 1...n? For e ...

  5. Spark案例分析

    一.需求:计算网页访问量前三名 import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} /* ...

  6. 数据结构笔记--二叉查找树概述以及java代码实现

    一些概念: 二叉查找树的重要性质:对于树中的每一个节点X,它的左子树任一节点的值均小于X,右子树上任意节点的值均大于X. 二叉查找树是java的TreeSet和TreeMap类实现的基础. 由于树的递 ...

  7. Java for LintCode 验证二叉查找树

    给定一个二叉树,判断它是否是合法的二叉查找树(BST) 一棵BST定义为: 节点的左子树中的值要严格小于该节点的值.    节点的右子树中的值要严格大于该节点的值.    左右子树也必须是二叉查找树. ...

  8. 二叉查找树的Java实现

    为了克服对树结构编程的恐惧感,决心自己实现一遍二叉查找树,以便掌握关于树结构编程的一些技巧和方法.以下是基本思路: [1] 关于容器与封装.封装,是一种非常重要的系统设计思想:无论是面向过程的函数,还 ...

  9. 二叉查找树(三)之 Java的实现

    概要 在前面分别介绍了"二叉查找树的相关理论知识,然后给出了二叉查找树的C和C++实现版本".这一章写一写二叉查找树的Java实现版本. 目录 1. 二叉树查找树2. 二叉查找树的 ...

随机推荐

  1. influxDB---Data Exploration

    the group clause group by 返回的分组结果是根据用户指定的tag ,time interval. 1.group by tags 2.group by time interva ...

  2. jQuery 遍历 (each、map)

    jQuery 遍历,意为“移动”,用于根据其相对于其他元素的关系来“查找”(或选取)HTML 元素.以某项选择开始,并沿着这个选择移动,直到抵达您期望的元素为止. jQuery 遍历函数 jQuery ...

  3. Webstorm如何设置背景色为护眼色(豆绿色)

    本文主要讲webstorm如何设置背景色. 1.打开idea Settings 选择 Editor——Color Scheme——General 注意:如果是Mac,在webstorm界面按键:“co ...

  4. Vue中非父子组件传值的问题

    父子组件传值的问题,前面已经讲过,不再叙述,这里来说一种非父子组件的传值. vue官网指出,可以使用一个空vue实例作为事件中央线! 也就是说 非父子组件之间的通信,必须要有公共的实例(可以是空的), ...

  5. Hexo+yilia博客添加背景音乐

    个人主页:https://www.yuehan.online 现在博客:www.wangyurui.top 第一步: 打开网易云音乐的官网:https://music.163.com/ 第二步: 搜索 ...

  6. LeetCode:全排列【46】

    LeetCode:全排列[46] 题目描述 给定一个没有重复数字的序列,返回其所有可能的全排列. 示例: 输入: [1,2,3] 输出: [ [1,2,3], [1,3,2], [2,1,3], [2 ...

  7. HibernateQL

    查询语言---QL(Query Language)   NativeSQL-------功能最强大 HQL--Hibernate QL EJB QL (JP QL)---HQL的一个子集 QBC--- ...

  8. hadoop03---nginx+keepalived

    1.1.反向代理 反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给internet上请求 ...

  9. opencv manager package was not found 解决办法

    http://blog.csdn.net/zjck1995/article/details/50358817 从网上好不容易找到的一个方法 1 解压OpenCV sdk 压缩包 2 eclipse 导 ...

  10. for循环执行流程

    语句格式: for(表达式1;表达式2;表达式3) { 循环体 } 表达式1:赋值表达式,用来给控制变量赋初值.(只执行一次) 表达式2:逻辑表达式,是循环的控制条件,用来判断控制变量是否符合循环条件 ...