hdu5514

题意

\(m\) 个石子绕成一圈,编号\([0, m - 1]\)。有 \(n\) 个青蛙从 \(0\) 号石子出发,给出每个青蛙的步长,青蛙无限跑圈。问哪些石子至少被一个青蛙经过,求这些石子的编号之和。

分析

假设某个青蛙的步长 \(x\),则一共会经过 $ \frac{m - 1}{x} + 1$ 个石子(包括 \(0\) )。可以用等差数列求和公式计算贡献。

然后找出 \(m\) 的所有因子并考虑哪些因子可能要计算贡献。

例如步长为 \(2\) 和 \(3\) 的计算后,步长为 \(6\) 的情况被计算了两次(或者说 \(6\) 的倍数的编号被计算了两次),应该减去一次,用一个数组记录某个步长被计算了几次贡献,在统计答案的时候减去即可。

code

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN = 1e4 + 10;
int a[MAXN];
int fac[MAXN];
int vis[MAXN]; // vis[i]表示fac[i]是否可能要计算贡献,如果为 0 一定不计算贡献
int num[MAXN]; // num[i]表示fac[i]被计算了几次贡献
int main() {
int T, kase = 1;
scanf("%d", &T);
while(T--) {
memset(vis, 0, sizeof vis);
memset(num, 0, sizeof num);
int n, m;
scanf("%d%d", &n, &m);
int fc = 0;
for(int i = 1; i * i <= m; i++) {
if(m % i == 0) {
fac[fc++] = i;
if(i * i != m) fac[fc++] = m / i;
}
}
sort(fac, fac + fc);
for(int i = 0; i < n; i++) {
scanf("%d", &a[i]);
a[i] = __gcd(a[i], m);
for(int j = 0; j < fc; j++) {
if(fac[j] % a[i] == 0) {
vis[j] = 1;
}
}
}
ll ans = 0;
for(int i = 0; i < fc - 1; i++) {
ll k = (m - 1) / fac[i];
ans += (k + 1) * k * fac[i] / 2 * (vis[i] - num[i]);
for(int j = i + 1; j < fc - 1; j++) {
if(fac[j] % fac[i] == 0) {
num[j] += vis[i] - num[i];
}
}
}
printf("Case #%d: %lld\n", kase++, ans);
}
return 0;
}

hdu5514的更多相关文章

  1. 从HDU2588:GCD 到 HDU5514:Frogs (欧拉公式)

    The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the ...

  2. HDU5514 Frogs

    /* HDU5514 Frogs http://acm.hdu.edu.cn/showproblem.php?pid=5514 容斥原理 * * */ #include <cstdio> ...

  3. hdu5514 非2的次幂容斥原理

    /* 1 126 223092870 210 330 390 462 510 546 570 690 714 770 798 858 910 966 1122 1155 1190 1254 1326 ...

  4. 【做题】hdu5514 Frogs——另类容斥

    题意是给出n个m的约数,问[0,m-1]中至少被其中一个约数整除的整数和.(n<=10000,m<=1000000000) 直接容斥的话,是2^n再拖个log的复杂度,加上当前的数大于m时 ...

  5. HDU5514——容斥原理&&gcd

    题目 链接 有n只青蛙,有m块石头,编号为0-m-1,第i只青蛙每次可以跳$a_i$, 刚开始都在0,问,青蛙总共可以跳到的石头之和为多少.其中$t≤20$,$1≤n≤10^4$,$1≤m≤10^9$ ...

随机推荐

  1. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  2. codeforces803D. Magazine Ad

    D. Magazine Adtime limit per test1 secondmemory limit per test256 megabytesinputstandard inputoutput ...

  3. sqrti128

    求平方根下取整,对于gcc type __uint128_t. ~45.5ns/op on i7-7700k@4.35G,即typical <200cyc/op. Together with u ...

  4. C# Producer Consumer (生产者消费者模式)demo

    第一套代码将producer Consumer的逻辑写到from类里了,方便在demo的显示界面动态显示模拟生产和消费的过程.     第二套代码将producer Consumer的逻辑单独写到一个 ...

  5. event对象和事件冒泡

    <!DOCTYPE HTML><html><head> <meta charset="utf-8"> <title>无标 ...

  6. Linux命令的返回值

    转摘自:http://hi.baidu.com/suchshow/item/230255b6caab369218469732 在 Linux 下,不管你是启动一个桌面程序也好,还是在控制台下运行命令, ...

  7. maven在add dependecy时搜索不出jar包的解决办法

    一:前言 其实我一直都很头疼maven的项目管理的,因为觉得用起来还是没有那么方便的啊,不过今天我自己算是小弄了下maven项目的故那里,是一个同事在配置maven的项目,我去凑了下热闹而已,现在自己 ...

  8. DOM创建和删除节点

    一.创建节点 3步 1.创建空元素对象: var newElem=document.createElement("标签名"); 例如:var a=document.createEl ...

  9. ubuntu 安装wxpython以及boa-constructor

    直接参考 官方的安装文档. 学习python 的时候就 用 wxPython . 那个时候用的是windows 的版本. 现在 用 ubuntu 下开发了.没有搭建好环境. 其实就一句话: sudo ...

  10. 基于 Windows 7 的计算机的可用内存可能低于安装内存

    https://support.microsoft.com/zh-cn/kb/978610 症状 在运行 Windows 7 的计算机上,可用内存 (RAM) 可能会低于安装内存. 例如,32 位版本 ...