C语言实现汉诺塔问题
代码如下:
#include <stdio.h>
#include <stdlib.h>
void move(int n,char x,char y,char z) {
if (n==) {
printf("%c--->%c\n",x,z);
}else {
move(n-,x,z,y);
printf("%c--->%c\n",x,z);
move(n-,y,x,z);
}
}
int main()
{
int n;
scanf("%d",&n);
move(n,'X','Y','Z');
return ;
}
C语言实现汉诺塔问题的更多相关文章
- 用C语言实现汉诺塔自动递归演示程序
用C语言实现汉诺塔自动递归演示程序 程序实现效果 1.变界面大小依照输入递归数改变. 2.汉诺塔自动移动演示. 3.采用gotoxy实现流畅刷新. 4.保留文字显示递归流程 程序展示及实现 githu ...
- 关于C语言解决汉诺塔(hanoi)问题
C语言解决汉诺塔问题 汉诺塔是典型的递归调用问题: hanoi简介:印度教的主神梵天在创造世界的时候,在其中一根针上从下到上地穿好了由大到小的64片金片,这就是所谓的汉诺塔.不论白天黑夜,总有一个僧侣 ...
- 【C语言】汉诺塔问题
之前遇见这个问题,非常费劲地理解了,并写出代码,然后过段时间,再遇见这个问题,又卡住了,如此反反复复两三次,才发现自己对递归的理解依然很肤浅.今天无聊,重温<算法:c语言实现>一书,又遇见 ...
- C语言 递归 汉诺塔问题 最大公约数问题
函数不能嵌套定义,但能嵌套调用(在调用一个函数的过程中再调用另一个函数) 函数间接或直接调用自己,称为递归调用 汉诺塔问题 思想:简化为较为简单的问题 n=2 较为复杂的问题,采用数学归纳方法分析 ...
- C语言实现汉诺塔
汉诺塔 要把A柱子上的盘子移动到C柱子上,在移动过程中可以借助B柱子,但是要求小的盘子在上大的盘子在下. 解题思路: 1.把A柱子上的前N-1个盘子借助C柱子,全部移动到B柱子上(过程暂不考虑),再把 ...
- 如何用Go语言实现汉诺塔算法
package main import ( "fmt" ) func print(n int,x rune,y rune)(){ fmt.Printf("moving d ...
- C语言解决汉诺塔问题!
很难受,看了很多资料才明白..... 对这个问题分析,发现思路如下:有n个黄金盘,要先把n-1个弄到B柱上,再把第n个弄到C柱上,然后把n-1个借助A柱弄到C柱上. 实现的函数如下: void f(i ...
- 汇编语言、与C语言、实现--汉诺塔--
题意描述: 用汇编语言实现汉诺塔.只需要显示移盘次序,不必显示所移盘的大小,例如: X>Z,X>Y,Z>Y,X>Z,..... (n阶Hanoi塔问题)假设有三个分别命名为 ...
- 汉诺塔(河内塔)算法 ----C语言递归实现
汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子, 在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺 ...
随机推荐
- windows10-seaslog安装笔记
1.seasLog在windows下的安装 首先,要下载seasLog的dll文件,下载地址:http://pecl.php.net/package/SeasLog 选择对应你的系统和php版本的d ...
- Spring学习--集合属性
Spring 中可以通过一组内置的 xml 标签(例如: <list> , <set> 或 <map>) 来配置集合属性. 配置java.util.Set 需要使用 ...
- 不谈OI:高二(13)最后一次班班有歌声
最后一次班班有歌声了…… 自己因为搞oi并没有参加,只是决赛的时候幕后放了放背景视频…… 不管怎么说,我们班唱的很棒啊,全部人都很棒! 说真的我为我们班骄傲 视频: https://v.qq.com/ ...
- [转]华 使用npm安装一些包失败了的看过来(npm国内镜像介绍)
发布于 5 年前 作者 wppept 275957 次浏览 最后一次编辑是 1 年前 这个也是网上搜的,亲自试过,非常好用! 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置 ...
- 【BZOJ 3907】网格(Catalan数)
题目链接 这个题推导公式跟\(Catalan\)数是一样的,可得解为\(C_{n+m}^n-C_{n+m}^{n+1}\) 然后套组合数公式\(C_n^m=\frac{n!}{m!(n-m)!}\) ...
- bzoj 3223 裸splay
裸的splay 今儿写的splay,由于自己刚开始学,发现几个容易漏掉的地方 1:开始给所有的儿子赋值为-1 2:给max[-1]赋值为-maxlongint 3:开始father[root]:=sr ...
- 一张图介绍 html中offset、client、scroll、offset 、padding、margin 各种属性介绍
- Linux搭建JavaEE开发环境与Tomcat——(十)
服务器通过ip地址访问是不需要备案的,如果通过域名访问的话才需要备案. 1.安装Mysql 在CentOS7上安装MySQL时,出现了以下的提示: 原因是: CentOS7带有MariaDB而不是my ...
- 培训补坑(day10:双指针扫描+矩阵快速幂)
这是一个神奇的课题,其实我觉得用一个词来形容这个算法挺合适的:暴力. 是啊,就是循环+暴力.没什么难的... 先来看一道裸题. 那么对于这道题,显然我们的暴力算法就是枚举区间的左右端点,然后通过前缀和 ...
- libssh2
http://www.cnblogs.com/lzrabbit/p/4298794.html shell脚本实现ssh自动登录远程服务器示例: #!/usr/bin/expect spawn ssh ...