数据标准化方法及其Python代码实现
数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间。目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法、标准差法)、折线型方法(如三折线法)、曲线型方法(如半正态性分布)。不同的标准化方法,对系统的评价结果会产生不同的影响,然而不幸的是,在数据标准化方法的选择上,还没有通用的法则可以遵循。
常见的方法有:min-max标准化(Min-max normalization),log函数转换,atan函数转换,z-score标准化(zero-mena normalization,此方法最为常用),模糊量化法,均值归一化。本文只介绍min-max标准化、Z-score标准化方法、均值归一化、log函数转换、atan函数转换。
data = [1, 3, 4, 5, 2, 13, 23, 71, 11, 19, 9, 24, 38]
一、min-max标准化(Min-Max Normalization)
也称为离差标准化,是对原始数据的线性变换,使结果值映射到[0 - 1]之间。转换函数如下:

from __future__ import print_function, division # min-max标准化方法
data0 = [(x - min(data))/(max(data) - min(data)) for x in data]
二、Z-score标准化方法
这种方法给予原始数据的均值(mean)和标准差(standard deviation)进行数据的标准化。经过处理的数据符合标准正态分布,即均值为0,标准差为1,转化函数为:

from __future__ import print_function
import math # 均值
average = float(sum(data))/len(data) # 方差
total = 0
for value in data:
total += (value - average) ** 2 stddev = math.sqrt(total/len(data)) # z-score标准化方法
data1 = [(x-average)/stddev for x in data]
三、均值归一化
两种方式,以max为分母的归一化方法和以max-min为分母的归一化方法

from __future__ import print_function # 均值
average = float(sum(data))/len(data) # 均值归一化方法
data2_1 = [(x - average )/max(data) for x in data] data2_2 = [(x - average )/(max(data) - min(data)) for x in data]
四、log函数转换方法
from __future__ import print_function import math # log2函数转换
data3_1 = [math.log2(x) for x in data] # log10函数转换
data3_2 = [math.log10(x) for x in data]
五、atan函数转换方法
from __future__ import print_function import math # atan函数转换方法
data4 = [math.atan(x) for x in data]
数据标准化方法及其Python代码实现的更多相关文章
- Z-Score数据标准化处理(python代码)
#/usr/bin/python def Z_Score(data): lenth = len(data) total = sum(data) ave = float(total)/lenth tem ...
- JQuery 获取json数据$.getJSON方法的实例代码
这篇文章介绍了JQuery 获取json数据$.getJSON方法的实例代码,有需要的朋友可以参考一下 前台: function SelectProject() { var a = new Array ...
- YoloV4当中的Mosaic数据增强方法(附代码详细讲解)码农的后花园
上一期中讲解了图像分类和目标检测中的数据增强的区别和联系,这期讲解数据增强的进阶版- yolov4中的Mosaic数据增强方法以及CutMix. 前言 Yolov4的mosaic数据增强参考了CutM ...
- 在代理中托管特殊方法的python代码实现
任务简单的介绍是: 在新风格对象模型中,Python操作其实是在类中查找特殊方法的(经典对象是在实例中进行操作的),现在需要将一些新风格的实例包装到代理中,,此代理可以选择将一些特殊的方法委托给内部的 ...
- 1.由于测试某个功能,需要生成500W条数据的txt,python代码如下
txt内容是手机号,数量500W,采用python代码生成,用时60S,本人技能有限,看官如果有更快的写法,欢迎留言交流. import random f = open("D:\\data. ...
- 优化Python代码的4种方法
介绍 作为数据科学家,编写优化的Python代码非常非常重要.杂乱,效率低下的代码即浪费你的时间甚至浪费你项目的钱.经验丰富的数据科学家和专业人员都知道,当我们与客户合作时,杂乱的代码是不可接受的. ...
- 用SVM处理XSS时,数据清洗打标数据标准化处理的方法和意义
def get_len(url): return len(url) def get_url_count(url): if re.search('(http://)|(https://)', url, ...
- 利用 pandas 进行数据的预处理——离散数据哑编码、连续数据标准化
数据的标准化 数据标准化就是将不同取值范围的数据,在保留各自数据相对大小顺序不变的情况下,整体映射到一个固定的区间中.根据具体的实现方法不同,有的时候会映射到 [ 0 ,1 ],有时映射到 0 附近的 ...
- 转:数据标准化/归一化normalization
转自:数据标准化/归一化normalization 这里主要讲连续型特征归一化的常用方法.离散参考[数据预处理:独热编码(One-Hot Encoding)]. 基础知识参考: [均值.方差与协方差矩 ...
随机推荐
- 剑指offer-第四章解决面试题思路(二叉收索树和双向链表)
题目:输入一个二叉收索树,将二叉搜索树转换成排序的双向链表.要求不能创建节点,只能将链表中的指针进行改变. 将复杂的问题简单化:思路:二叉收索树,本身是一个排序结构,中序遍历二叉收索树就可以得到一组排 ...
- FastAdmin CMS 插件相关文章收集(2018-08-16)
FastAdmin CMS 插件相关文章收集(2018-08-16) CMS内容管理系统(含小程序) 介绍 https://www.fastadmin.net/store/cms.html CMS内容 ...
- 善待Erlang 代码 -- 巧用 user_default
这是一篇水文 ----------------------------------------------------- 很好用的一个技巧 http://www.erlang.org/doc/man/ ...
- java工具类mht转html格式文件 及简单的HTML解析
package com.szy.project.utils; import java.io.BufferedInputStream; import java.io.BufferedOutputStre ...
- 上一步是硬件描述语言,下一步是FPGA
上一步是硬件描述语言,下一步是FPGA. 学习了硬件描述语言(Verilog或者VHDL)之后,FPGA该如何继续. 世上没有捷径,每一步都得踏踏实实的走.学习FPGA也是这样,在有了硬件描述语言的基 ...
- Apache CXF使用Jetty发布WebService
一.概述 Apache CXF提供了用于方便地构建和开发WebService的可靠基础架构.它允许创建高性能和可扩展的服务,可以部署在Tomcat和基于Spring的轻量级容器中,也可以部署在更高级的 ...
- jenkins使用HTML Publisher Plugin插件 拉取报告样式缺失问题解决
---------------------------------------------------------临时解决方案----亲测ok 要解决该问题,方式也比较简单,就是修改Content S ...
- linux 定时脚本任务的创建
参考资料https://my.oschina.net/xsh1208/blog/512810 定时脚本任务创建过程 1. 启动/终止 crontab 服务 一般使用这个命令/sbin/service ...
- php解析base64数据成图片
$base64 = "/9j/4AAQSkZJRgABAQEAkACQAAD/4QCMRXhpZgAATU0AKgAAAAgABQESAAMAAAABAAEAAAEaAAUAAAABAAAA ...
- python学习(一) 基础知识
开始学习<Python基础教程> 1.2 交互式解释器 按照书上的例子敲了个最简单的print函数,居然报错: >>> print "fsdfs"Sy ...