「长乐集训 2017 Day1」区间 线段树
题目
对于两个区间\((a,b),(c,d)\),若\(c < a < d\)或\(c < b < d\)则可以从\((a,b)\)走到\((c,d)\)去,现在有以下两种操作:
- 给定\(1 \space x \space y\),表示在集合中添加\((x,y)\)这个区间,保证新加入的这个区间一定比之前的所有区间长度长。
- 给定\(2 \space a \space b\),表示询问是否有一条路径能从第\(a\)个区间走到第\(b\)个区间。
初始时区间集合为空,现在请你回答所有的询问
\(1 \leq n \leq 10^5,所有数字绝对值 \leq 10^9\)
题解:
容易发现新加入的区间与其左右端点落到的区间一定是可以互达的。
所以可以合并其集合。
那么对于新加入的区间所覆盖的区间来说,多了一条到新加入区间的单向边。
我们可以统计记录所有集合的最小左端点和最大右端点来判断一个区间是否可以通过有向边到达另一个区间。
对于区间的维护我们可以使用并查集。
同时使用线段树来维护插入区间和查询覆盖单点的所有区间的操作。
由于每次进行完合并操作后点上的所有的区间都会合并为一个。
所以总体复杂度\(O(n\log^2n)\)
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;static char ch;static bool flag;flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
#define rg register int
#define rep(i,a,b) for(rg i=(a);i<=(b);++i)
#define per(i,a,b) for(rg i=(a);i>=(b);--i)
const int maxn = 100010;
int L[maxn],R[maxn],op[maxn];
int c[maxn<<1],cnt = 0,fa[maxn];
int find(int x){return fa[x] == x ? x : fa[x] = find(fa[x]);}
inline void Union(int u,int v){
int x = find(u),y = find(v);
if(x == y) return ;
fa[x] = y;
L[y] = min(L[y],L[x]);
R[y] = max(R[y],R[x]);
return ;
}
vector<int>ve[maxn<<3];
void modify(int rt,int l,int r,int p,int id){
for(vector<int>::iterator it = ve[rt].begin();it != ve[rt].end();++it) Union(*it,id);
if(ve[rt].empty() == false) ve[rt].clear(),ve[rt].push_back(find(id));
if(l == r) return ;
int mid = l+r >> 1;
if(p <= mid) modify(rt<<1,l,mid,p,id);
else modify(rt<<1|1,mid+1,r,p,id);
}
void insert(int rt,int l,int r,int L,int R,int id){
if(L <= l && r <= R){ve[rt].push_back(id);return ;}
int mid = l+r >> 1;
if(L <= mid) insert(rt<<1,l,mid,L,R,id);
if(R > mid) insert(rt<<1|1,mid+1,r,L,R,id);
}
int idx[maxn],num = 0;
int main(){
freopen("interval.in","r",stdin);
freopen("interval.out","w",stdout);
int n;read(n);
rep(i,1,n){
read(op[i]);read(L[i]);read(R[i]);
if(op[i] == 1) c[++cnt] = L[i],c[++cnt] = R[i];
}
sort(c+1,c+cnt+1);
rep(i,1,n){
if(op[i] == 1){
int l = lower_bound(c+1,c+cnt+1,L[i]) - c;
int r = lower_bound(c+1,c+cnt+1,R[i]) - c;
idx[++ num] = i;fa[i] = i;
modify(1,1,cnt,l,i);modify(1,1,cnt,r,i);
if(l+1 <= r-1) insert(1,1,cnt,l+1,r-1,i);
}else{
int u = find(idx[L[i]]);
int v = find(idx[R[i]]);
//printf("u = %d,v = %d\n",u,v);
if(u == v) puts("YES");
else if(L[v] < L[u] && L[u] < R[v]) puts("YES");
else if(L[v] < R[u] && R[u] < R[v]) puts("YES");
else puts("NO");
}
}
return 0;
}
「长乐集训 2017 Day1」区间 线段树的更多相关文章
- LOJ #6029. 「雅礼集训 2017 Day1」市场 线段树维护区间除法
题目描述 从前有一个贸易市场,在一位执政官到来之前都是非常繁荣的,自从他来了之后,发布了一系列奇怪的政令,导致贸易市场的衰落. 有 \(n\) 个商贩,从\(0 \sim n - 1\) 编号,每个商 ...
- 【loj6029】「雅礼集训 2017 Day1」市场 线段树+均摊分析
题目描述 给出一个长度为 $n$ 的序列,支持 $m$ 次操作,操作有四种:区间加.区间下取整除.区间求最小值.区间求和. $n\le 100000$ ,每次加的数在 $[-10^4,10^4]$ 之 ...
- 「雅礼集训 2017 Day1」市场 (线段树除法,区间最小,区间查询)
老师说,你们暴力求除法也整不了多少次就归一了,暴力就好了(应该只有log(n)次) 于是暴力啊暴力,结果我归天了. 好吧,在各种题解的摧残下,我终于出了一篇巨好看(chou lou)代码(很多结构体党 ...
- loj#6029. 「雅礼集训 2017 Day1」市场(线段树)
题意 链接 Sol 势能分析. 除法是不能打标记的,所以只能暴力递归.这里我们加一个剪枝:如果区间内最大最小值的改变量都相同的话,就变成区间减. 这样复杂度是\((n + mlogn) logV\)的 ...
- #6029. 「雅礼集训 2017 Day1」市场 [线段树]
考虑到每次除法,然后加法,差距会变小,于是维护加法lazytag即可 #include <cstdio> #include <cmath> #define int long l ...
- 「长乐集训 2017 Day10」划分序列 (二分 dp)
「长乐集训 2017 Day10」划分序列 题目描述 给定一个长度为 n nn 的序列 Ai A_iAi,现在要求把这个序列分成恰好 K KK 段,(每一段是一个连续子序列,且每个元素恰好属于一 ...
- loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积)
loj6271 「长乐集训 2017 Day10」生成树求和 加强版(矩阵树定理,循环卷积) loj 题解时间 首先想到先分开三进制下每一位,然后每一位分别求结果为0,1,2的树的个数. 然后考虑矩阵 ...
- loj #6032. 「雅礼集训 2017 Day2」水箱 线段树优化DP转移
$ \color{#0066ff}{ 题目描述 }$ 给出一个长度为 \(n\) 宽度为 \(1\) ,高度无限的水箱,有 \(n-1\) 个挡板将其分为 \(n\) 个 \(1 - 1\) 的小格, ...
- loj6271「长乐集训 2017 Day10」生成树求和 加强版
又是一个矩阵树套多项式的好题. 这里我们可以对每一位单独做矩阵树,但是矩阵树求的是边权积的和,而这里我们是要求加法,于是我们i将加法转化为多项式的乘法,其实这里相当于一个生成函数?之后如果我们暴力做的 ...
随机推荐
- loadrunner之脚本篇——将内容保存为参数
在VuGen中默认使用{}的字符串称为参数 注意:参数必须在双引号中才能用 将字符串保存为参数 lr_save_string("string you want to save", ...
- sublime text C++
几乎每一门编程语言都是从"Hello, world!"学起的, 刚学编程的时候感觉有点枯燥, 对它不够重视. 可是到后来慢慢发现, 几乎我学到的每一个知识点, 在最开始都是经过 h ...
- PHPExcel常用属性使用
PHPExcel常用属性使用 前景: 需先实例化几个变量: $this->objExcel = new PHPExcel(); //实例化一个PHPExcel变量 $this->objE ...
- vscode使用vue中的v-for提示错误
"vetur.validation.template": false 在设置里面把vetur.validation.template改为false 文件→首选项→设置 搜索vetu ...
- 收集整理的awk用法小结
awk 用法:awk ‘ pattern {action} ‘ 变量名 含义 ARGC 命令行变元个数 ARGV 命令行变元数组 FILENAME 当前输入文件名 FNR 当前文件中的记录号 FS 输 ...
- lvds(800*600)
static struct fb_videomode ldb_modedb[] = { 107 107 { 108 + "LDB-SGA", 60, 800, 600, 25132 ...
- 【bzoj2423】最长公共子序列[HAOI2010](dp)
题目传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2423 题目大意:求两个字符串的最长公共子序列长度和最长公共子序列个数. 这道题的话,对于 ...
- WEB开发中常见漏洞
1.sql注入 SQL注入在黑客领域是一种非常常见的攻击手段,大家应该都听说过很多数据泄漏的案例,其中大部分都是采用SQL注入来获取数据的. SQL注入一般是前端向后台提交数据的时候,在数据中加入SQ ...
- 到底EJB是什么
到底EJB是什么 到底EJB是什么?被口口相传的神神秘秘的,百度一番,总觉得没有讲清楚的,仍觉得一头雾水.百度了很久,也从网络的文章的只言片语中,渐渐有了头绪. 用通俗话说,EJB就是:" ...
- php二维数组自定义排序
$arr = array( '0' => array('id' =>1,'price'=>200), '1' => array('id' =>2,'price'=> ...