Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.

Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.

Input

The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).

Output

Output the K-th element in a single line.

Sample Input

2006 1
2006 2
2006 3

Sample Output

1
3
5 分解n的质因子,利用二分法,利用容斥原理求出不互质的数目个数并减去。直到i=k。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define LL long long
#define maxn 70 LL p[maxn];
LL make_ans(LL num,int m)//1到num中的所有数与m个质因子不互质的个数 注意是不互质哦
{
LL ans=0,tmp,i,j,flag;
for(i=1;i<(LL)(1<<m);i++)
{ //用二进制来1,0来表示第几个素因子是否被用到,如m=3,三个因子是2,3,5,则i=3时二进制是011,表示第2、3个因子被用到
tmp=1,flag=0;
for(j=0;j<m;j++)
if(i&((LL)(1<<j)))//判断第几个因子目前被用到
flag++,tmp*=p[j];
if(flag&1)//容斥原理,奇加偶减
ans+=num/tmp;
else
ans-=num/tmp;
}
return ans;
} int main()
{
LL a,b,i; LL m,n;
while(~scanf("%lld%lld",&m,&n))
{
memset(p,0,sizeof(p));
LL num=0;
LL mm=m;
for(LL i=2;i*i<=mm;i++)
{
if(mm%i==0)
p[num++]=i;
while(mm%i==0)
mm/=i;
}
if(mm!=1)
p[num++]=mm;
LL l=1;
LL r=((LL)1<<31);
LL ans=0;
LL res=0;
while(l<=r)
{
LL mid=(l+r)>>1;
ans=mid-make_ans(mid,num);
if(ans>n)
r=mid-1;
else if(ans<n)
l=mid+1;
else{
res=mid;
r=mid-1;
}
}
cout<<res<<endl;
}
return 0;
}

  

并且在网上看到另一种解法:

http://blog.csdn.net/huangshuai147/article/details/51277645

如果知道欧几里德算法的话就应该知道gcd(b×t+a,b)=gcd(a,b)  (t为任意整数)

则如果a与b互素,则b×t+a与b也一定互素,如果a与b不互素,则b×t+a与b也一定不互素

故与m互素的数对m取模具有周期性,则根据这个方法我们就可以很快的求出第k个与m互素的数

假设小于m的数且与m互素的数有k个,其中第i个是ai,则第m×k+i与m互素的数是k×m+ai

附代码

#include<stdio.h>
int s[1000005];
int gcd(int a,int b)
{
if(b==0)
{
return a;
}
else
{
return gcd(b,a%b);
}
}
int main()
{
int m,k;
while(scanf("%d%d",&m,&k)!=EOF)
{
int i;
int num=0;
for(i=1;i<=m;i++)
{
if(gcd(m,i)==1)
{
s[num++]=i;
}
}
if(k%num==0)
{
printf("%d\n",(k/num-1)*m + s[num-1]);
}
else
{
printf("%d\n",k/num*m + s[k%num-1]);
}
}
return 0;
}

  

poj_2773_Happy 2006的更多相关文章

  1. BZOJ 2006: [NOI2010]超级钢琴

    2006: [NOI2010]超级钢琴 Time Limit: 20 Sec  Memory Limit: 552 MBSubmit: 2613  Solved: 1297[Submit][Statu ...

  2. #Deep Learning回顾#之2006年的Science Paper

    大家都清楚神经网络在上个世纪七八十年代是着实火过一回的,尤其是后向传播BP算法出来之后,但90年代后被SVM之类抢了风头,再后来大家更熟悉的是SVM.AdaBoost.随机森林.GBDT.LR.FTR ...

  3. MySQL(Navicat)运行.sql文件时报错:[Err] 2006 - MySQL server has gone away 的解决方法

    背景: 今天导入一个数据量很大的.sql文件时,报错: 原因: 可能是sql语句过长,超过mysql通信缓存区最大长度. 解决:1. 编辑 MySQL 安装目录下的 my.ini,在最后添加以下内容: ...

  4. MySQL导入sql脚本错误:2006 - MySQL server has gone away

    到如一些小脚本很少报错,但最近导入一个10+M的SQL脚本,却重复报错: Error occured at:2014-03-24 11:42:24 Line no.:85 Error Code: 20 ...

  5. BizTalk开发系列(三) 单机环境下的BizTalk Server 2006 R2安装

    大部分的开发环境都是在单机环境下进行的,今天整理了一下BizTalk Server 2006 R2在单机环境下的安装步骤. 1. 软件需求 在独立服务器中完整安装BizTalk Server 2006 ...

  6. (转自http://www.blogjava.net/moxie/archive/2006/10/20/76375.html)WebWork深入浅出

    (转自http://www.blogjava.net/moxie/archive/2006/10/20/76375.html) WebWork深入浅出 本文发表于<开源大本营> 作者:钱安 ...

  7. 【mysql】之MySQL导入sql脚本错误:2006 - MySQL server has gone away

    到如一些小脚本很少报错,但最近导入一个10+M的SQL脚本,却重复报错: Error occured at:2014-03-24 11:42:24Line no.:85Error Code: 2006 ...

  8. BZOJ 2006 超级钢琴(划分树+优先队列)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2006 题意: 给出一个数列A,L,R,构造出一个新的集合,集合中的数字为A中任意连续t( ...

  9. NET程序的破解--静态分析(Xenocode Fox 2006 Evaluation)

    NET程序已经红红火火的兴起,就象LINUX一样势不可挡的涌来.作为一名Cracker,你会选择躲避吗?嘿嘿,对俺而言,挑战更富有趣味. 破解好几个.NET的程序了,一直想写出来,只是时间问题,所以拖 ...

随机推荐

  1. 当Activity出现Exception时是如何处理的?

    1.ActivityThread 2.PerformStop 在这里会调用mWindow.closeAllPanels(),从而关闭OptionMenu, ContextMenu.如果自己通过Wind ...

  2. Linux的find命令实例详解和mtime ctime atime

    这次解释一下三个Linux文件显示的三个时间,然后展示一下find命令的各个功能 在linux操作系统中,每个文件都有很多的时间参数,其中有三个比较主要,分别是ctime,atime,mtime mo ...

  3. 创建 XMLHttpRequest 对象时IE的兼容问题解决办法

    为了应对所有的现代浏览器,包括 IE5 和 IE6,请检查浏览器是否支持 XMLHttpRequest 对象.如果支持,则创建 XMLHttpRequest 对象.如果不支持,则创建 ActiveXO ...

  4. MongoDB(online) 优化

    MongoDB(online) 优化 1. find.findOne 2. 操作 vip_emp_relation 的一个公共方法 3. 查询记录数 4. save.insert 5. 总结 1. f ...

  5. 18_CGLib动态代理

    [概述] 已知JDK动态代理中的Proxy.newProxyInstance(ClassLoader loader,Class[] interfaces,InvocationHandler h)方法的 ...

  6. 【Linux】Linux 在线安装yum

    Linux如何安装软件? 一.RPM安装 优点: 安装过程很简单 缺点: 需要自己寻找和系统版本对应的RPM包 安装过程中需要解决包的依赖问题(例如tftp包) 二.yum在线安装 软件包仓库 仓库的 ...

  7. Windows下COCOS2D-X开发环境配置

    1. 下载Android SDK: http://developer.android.com/sdk/index.html ,解压到E:\ADT 目录下 2. 下载NDK: http://develo ...

  8. jscode属性排序

    根据data中的value 对geCoorMap 进行排序,暂定降序排序. var data = [{name:"name1",value:29},{name:"name ...

  9. HCNA多区域OSPF配置

    1.拓扑图 2.各路由器配置角本 ospf 多区域配置 #R5配置 sys sysname AR5 interface s2// ip add 10.0.35.5 255.255.255.0 inte ...

  10. vue-cli run dev 和 run build 出现的问题(运行项目、打包项目)

    前些天做项目,过程中遇到了一个比较奇怪的问题:npm run dev 和 npm run build 的时候,出现了错误,导致项目无法启动.打包无法成功.报了一堆错误: 错误展示: 找了一下解决方案, ...