题目链接

BZOJ3456

题解

之前我们用分治\(ntt\)在\(O(nlog^2n)\)的复杂度下做了这题,今天我们使用多项式求逆

设\(f_n\)表示\(n\)个点带标号无向连通图数

设\(g_n\)表示\(n\)个点图的数量,显然\(g_n = 2^{{n \choose 2}}\)

枚举\(1\)号点所在联通块大小,我们有

\[g_n = \sum\limits_{i = 1}^{n} {n - 1 \choose i - 1}f_{i}g_{n - i}
\]

代入\(g_n\)

\[2^{{n \choose 2}} = \sum\limits_{i = 1}^{n} \frac{(n - 1)!}{(n - i)!(i - 1)!}f_{i}2^{{n - i \choose 2}}
\]

整理一下:

\[\frac{2^{{n \choose 2}}}{(n - 1)!} = \sum\limits_{i = 1}^{n} \frac{f_i}{(i - 1)!} * \frac{2^{{n - i \choose 2}}}{(n - i)!}
\]

发现是一个卷积的形式

\[F(x) = \sum\limits_{n = 1}^{+\infty} \frac{f_n}{(n - 1)!} x^n
\]

\[G(x) = \sum\limits_{n = 0}^{+\infty} \frac{2^{{n \choose 2}}}{n!} x^n
\]

\[H(x) = \sum\limits_{n = 1}^{+\infty} \frac{2^{{n \choose 2}}}{(n - 1)!} x^n
\]

则有

\[H(x) = F(x)G(x)
\]

那么

\[F(x) = H(x)G^{-1}(x)
\]

多项式求逆后再求一次卷积就可求得答案

复杂度\(O(nlogn)\),快了不少

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 300005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
const int G = 3,P = 1004535809;
int f[maxn],g[maxn],h[maxn],gv[maxn],N;
int fac[maxn],inv[maxn],fv[maxn];
int c[maxn],R[maxn];
inline int qpow(int a,LL b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k]; y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P; a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
void work(int deg,int* a,int* b){
if (deg == 1){b[0] = qpow(a[0],P - 2); return;}
work((deg + 1) >> 1,a,b);
int L = 0,n = 1;
while (n < (deg << 1)) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = 0; i < deg; i++) c[i] = a[i];
for (int i = deg; i < n; i++) c[i] = 0;
NTT(c,n,1); NTT(b,n,1);
for (int i = 0; i < n; i++)
b[i] = 1ll * ((2ll - 1ll * c[i] * b[i] % P) % P + P) % P * b[i] % P;
NTT(b,n,-1);
for (int i = deg; i < n; i++) b[i] = 0;
}
void init(){
fac[0] = fac[1] = inv[0] = inv[1] = fv[0] = fv[1] = 1;
for (int i = 2; i <= N; i++){
fac[i] = 1ll * fac[i - 1] * i % P;
inv[i] = 1ll * (P - P / i) * inv[P % i] % P;
fv[i] = 1ll * fv[i - 1] * inv[i] % P;
}
g[0] = 1;
for (int i = 1; i <= N; i++){
h[i] = 1ll * qpow(2,1ll * i * (i - 1) / 2) * fv[i - 1] % P;
g[i] = 1ll * qpow(2,1ll * i * (i - 1) / 2) * fv[i] % P;
}
}
int main(){
N = read();
init();
work(N + 1,g,gv);
int L = 0,n = 1;
while (n <= (N << 1)) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(h,n,1); NTT(gv,n,1);
for (int i = 0; i < n; i++)
f[i] = 1ll * h[i] * gv[i] % P;
NTT(f,n,-1);
int ans = 1ll * f[N] * fac[N - 1] % P;
printf("%d\n",ans);
return 0;
}

BZOJ3456 城市规划 【多项式求逆】的更多相关文章

  1. BZOJ 3456: 城市规划 多项式求逆

    Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接 ...

  2. 【BZOJ3456】城市规划 多项式求逆

    [BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...

  3. bzoj 3456 城市规划 多项式求逆+分治FFT

    城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1091  Solved: 629[Submit][Status][Discuss] Desc ...

  4. bzoj3456 城市规划 多项式求In

    \(n\)个点的无向联通图的个数 打着好累啊 一定要封装一个板子 记\(C(x)\)为无向图个数的指数型生成函数,\(C(0) = 1\) 记\(G(x)\)为无向联通图个数的指数型生成函数,\(G( ...

  5. 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln

    题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...

  6. 【bzoj3456】城市规划(多项式求逆+dp)

    Description 求\(~n~\)个点组成的有标号无向连通图的个数.\(~1 \leq n \leq 13 \times 10 ^ 4~\). Solution 这道题的弱化版是poj1737, ...

  7. 【bzoj3456】城市规划 容斥原理+NTT+多项式求逆

    题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为 ...

  8. [bzoj3456] 城市规划 [递推+多项式求逆]

    题面 bzoj权限题面 离线题面 思路 orz Miskcoo ! 先考虑怎么算这个图的数量 设$f(i)$表示$i$个点的联通有标号无向图个数,$g(i)$表示$n$个点的有标号无向图个数(可以不连 ...

  9. [BZOJ3456]城市规划:DP+NTT+多项式求逆

    写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点 ...

随机推荐

  1. Flask初学者:url_for

    URL反转:反转是指通过视图函数名称得到其对应的URL(有反转也就有正转,即通过URL得到视图函数返回的内容,也就是我们平时的访问网页了),需要“url_for(endpoint, **values) ...

  2. 前端学习之HTML基础

    要点: 理解HTTP请求响应模式及通信规范 HTML的各种标签和常用标签 CSS是用于样式渲染和定位布局 JS将HTML动态化 jquery是JS的高级封装 理解HTTP请求响应模式及通信规范 HTT ...

  3. python学习之面向对象程序设计的一些思考

    将属于一类的对象放在一起: 如果一个函数操纵一个全局变量,那么两者最好都在类内作为特性和方法实现. 不要让对象过于亲密: 方法应该只关心自己实例的特性,让其他实例管理自己的状态. 简单就好: 让方法小 ...

  4. ruby $LOAD_PATH及类加载

    $LOAD_PATH $LOAD_PATH 指的是Ruby读取外部文件的一个环境变量,其实和windows的环境变量是一个概念.Ruby会在这个环境变量的路径中读取需要require的文件,如果在环境 ...

  5. C语言实例解析精粹学习笔记——43(希尔排序)

    实例说明: 用希尔排序方法对数组进行排序.由于书中更关注的实例,对于原理来说有一定的解释,但是对于第一次接触的人来说可能略微有些简略.自己在草稿纸上画了好久,后来发现网上有好多很漂亮的原理图. 下面将 ...

  6. 对bluebird的理解

    前言 Promise:把原来的回调写法分离出来,在异步操作执行完后,用链式调用的方式执行回调函数. 在公众号的开发里面用的const Promise = require('bluebird');con ...

  7. MOVE-PERCENTAGE(文字列の部分の代入)

    以下の MOVE 命令のバリアントは.c 型項目についてのみ機能します. MOVE c1 TO c2 PERCENTAGE p [RIGHT]. 左寄せした (RIGHT オプションを指定した場合は右 ...

  8. 安装sql server

    因为电脑中只有mysql数据库,所以昨天准备安装一个sql server.安装中出现了许多问题,首先第一遍的时候,安装组件中没有勾选管理工具这个选项,所以在最后的时候,文件夹中只有配置管理器,没有数据 ...

  9. 6.JAVA知识点归纳整理

    一.jdk初识与HelloWord: 二.java基础: 2.1 标识符_关键字_数据类型 2.2 数据类型转换 2.3 程序编写格式 2.4 运算符 2.5 分支与for循环 2.6 while_b ...

  10. kafka监听类

    package com.datad.dream.service; import com.alibaba.fastjson.JSON; import com.datad.dream.dao.KafkaI ...