[COGS 2421] [HZOI 2016] 简单的Treap 笛卡尔树
笛卡尔树就是你给两维限制,一维堆R,一维二叉搜索树K,平地拔起一棵Treap,最广范的应用:用LCA求区间最值,建Treap,还有个什么范围top k我表示并不会查都查不到。它最妙最高的地方在于用栈来建树:我们可以先排序K然后一个个插入,那么我们都是最右端,横容易被卡,那么我们不从上到下,我们从下到上,用栈维护,那就把时间复杂度从O(n^2)降到O(n),具体过程见下图从图一到图二就是这么一个过程,我们在把K为13的点插入时要找到一个合适的位置,上比他大,下比他小(假设大根堆)


下面见代码
#include<cstdio>
#include<algorithm>
#define MAXN 500010
using namespace std;
inline int read()
{
int sum=;
char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<='')
{
sum=(sum<<)+(sum<<)+ch-'';
ch=getchar();
}
return sum;
}
struct Treap
{
int key,r;
Treap *ch[];
}*stack[MAXN],node[MAXN],*root;
int top;
int n;
int comp(const Treap a,const Treap b)
{
return a.key<b.key;
}
inline void Init()
{
n=read();
for(int i=;i<=n;i++)node[i].key=read();
for(int i=;i<=n;i++)node[i].r=read();
sort(node+,node+n+,comp);
}
inline void Build()
{
stack[++top]=node+;
for(int i=;i<=n;i++)
{
Treap *last=NULL;
while(top&&stack[top]->r>node[i].r)
last=stack[top--];
if(top)stack[top]->ch[]=node+i;
node[i].ch[]=last;
stack[++top]=node+i;
}
root=stack[];
}
void dfs(Treap *p)
{
if(!p)return;
printf("%d ",p->key);
dfs(p->ch[]);
dfs(p->ch[]);
}
int main()
{
int __size__=<<;
char *__p__=(char*)malloc(__size__)+__size__;
__asm__("movl %0, %%esp\n"::"r"(__p__));
freopen("treap.in","r",stdin);
freopen("treap.out","w",stdout);
Init();
Build();
dfs(root);
return ;
}
[COGS 2421] [HZOI 2016] 简单的Treap 笛卡尔树的更多相关文章
- COGS 2421.[HZOI 2016]简单的Treap 题解
题目大意: 给定n个数及其优先级,求对应的符合最小堆性质的Treap的先序遍历. n<=500000. 解法: 目前为止我只想到了三种解法,其中第三种是正解. 1.暴力1 以优先级为关键字排序, ...
- [补档][HZOI 2016]简单的Treap
[HZOI 2016]简单的Treap 题目 Treap是一种平衡二叉搜索树,除二叉搜索树的基本性质外,Treap还满足一个性质: 每个节点都有一个确定的优先级,且每个节点的优先级都比它的两个儿子小( ...
- cogs——2478. [HZOI 2016]简单的最近公共祖先
2478. [HZOI 2016]简单的最近公共祖先 ★☆ 输入文件:easy_LCA.in 输出文件:easy_LCA.out 简单对比时间限制:2 s 内存限制:128 MB [题 ...
- cogs 2478. [HZOI 2016]简单的最近公共祖先
2478. [HZOI 2016]简单的最近公共祖先 ★☆ 输入文件:easy_LCA.in 输出文件:easy_LCA.out 简单对比时间限制:2 s 内存限制:128 MB [题 ...
- COGS2421 [HZOI 2016]简单的Treap
题面见这里 大概是个模板题 Treap暴力插入的做法太暴力了并不优美 这里就需要用到笛卡尔树的构造方法,定义见这里 在 假的O(n) 的时间内构造一棵Treap 把元素从小到大排序 这样从小到大插入时 ...
- 平衡树及笛卡尔树讲解(旋转treap,非旋转treap,splay,替罪羊树及可持久化)
在刷了许多道平衡树的题之后,对平衡树有了较为深入的理解,在这里和大家分享一下,希望对大家学习平衡树能有帮助. 平衡树有好多种,比如treap,splay,红黑树,STL中的set.在这里只介绍几种常用 ...
- NOIP2011pj表达式的值[树形DP 笛卡尔树 | 栈 表达式解析]
题目描述 对于1 位二进制变量定义两种运算: 运算的优先级是: 先计算括号内的,再计算括号外的. “× ”运算优先于“⊕”运算,即计算表达式时,先计算× 运算,再计算⊕运算.例如:计算表达式A⊕B × ...
- 【BZOJ2658】[Zjoi2012]小蓝的好友(mrx) 平衡树维护笛卡尔树+扫描线
[BZOJ2658][Zjoi2012]小蓝的好友(mrx) Description 终于到达了这次选拔赛的最后一题,想必你已经厌倦了小蓝和小白的故事,为了回馈各位比赛选手,此题的主角是贯穿这次比赛的 ...
- [TJOI2011]树的序(贪心,笛卡尔树)
[TJOI2011]树的序 题目描述 众所周知,二叉查找树的形态和键值的插入顺序密切相关.准确的讲:1.空树中加入一个键值k,则变为只有一个结点的二叉查找树,此结点的键值即为k:2.在非空树中插入一个 ...
随机推荐
- [转]不让iTunes备份到c盘
很多人现在的C盘都是空间不大的SSD硬盘,ITUNES备份老是占越来越大的空间,不如动手把它改成其它盘好了.下面7个步骤教你转移备份. 1.需要一个小工具:Juction.exe,如果你已经是WIN7 ...
- Mysql基础1-基础语法-字段类型
主要: 基础 字段类型 基础 基本概念 1) 数据库分类 层次数据库,网状数据库,关系数据库 常见:SQL Server, Oracle,infomix,sybase,ibmDB2,Mysql 2)数 ...
- QOS-QOS(服务质量)概述
QOS-QOS(服务质量)概述 2018年7月7日 20:29 概述及背景: 1. 引入: 传统IP网络仅提供“尽力而为”的传输服务,网络有可用资源就转发,资源不足时就丢弃 新一代IP网络承载了 ...
- 005---基于UDP的套接字
基于UDP的套接字 udp不同于tcp协议:不需要经过三次握手.四次挥手.直接发送数据就行. 服务端 import socket ip_port = ('127.0.0.1', 8001) buffe ...
- (数据科学学习手札10)系统聚类实战(基于R)
上一篇我们较为系统地介绍了Python与R在系统聚类上的方法和不同,明白人都能看出来用R进行系统聚类比Python要方便不少,但是光介绍方法是没用的,要经过实战来强化学习的过程,本文就基于R对2016 ...
- java web项目使用ant编译将不同的功能代码打包成jar,进而分局点将项目打包成不同的tar.gz包进而部署
使用ant可以轻松的将一个项目分离代码,直接打包成不同需求的tar.gz包使用 1.build.properties (属性) version.num=1.0 #版本信息 2.build.xml (a ...
- python2.7练习小例子(八)
8):题目:输出 9*9 乘法口诀表. 程序分析:分行与列考虑,共9行9列,i控制行,j控制列. 程序源代码: #!/usr/bin/python # -*- coding: ...
- 基于Ubuntu Server 16.04 LTS版本安装和部署Django之(一):安装Python3-pip和Django
近期开始学习基于Linux平台的Django开发,想配置一台可以发布的服务器,经过近一个月的努力,终于掌握了基于Apache和mod-wsgi插件的部署模式,自己也写了一个教程,一是让自己有个记录,二 ...
- thrift 调取 python php go 客户端代码
golang package main import ( "fmt" "git.apache.org/thrift.git/lib/go/thrift" &qu ...
- [网站日志]当Memcached缓存服务挂掉时性能监视器中的表现
我们用的Memcached缓存服务是阿里云OCS,今天晚上遇到了一次OCS挂掉的情况(计划中的升级),看一下性能监视器中的表现,也许对分析黑色1秒问题有帮助. 应用日志中错误: 2014-06-05 ...