超级钢琴

知识储备

在做这道题前,我们先要了解一下ST表(一种离线求区间最值的方法)

ST表使用DP实现的,其查询复杂度为O(1).

那么我们怎么用DP实现呢??

首先,我们设立一个状态f[i][j],其中i代表起点(包括在内),而j则代表是2的几次方,那么这个状态的含义就是以i为起点,求i~i+2^j-1内的区间最大值

最开始,我们定义f[i][0]的值为其本身即a[i]

那么我们转移方程就是

f[i][j]=max(f[i][j-1],f[i+(1<<(j-1)][j-1]);  //一层一层的推过来...

然后我们就知道在一定区间内的最大值了!!

查询也是一个需要特别注意的点,我们要知道查询的x位置和y位置之间max,就要知道y-x+1是y的几次方,其中这个要向下取整,防止越界,但是这样我们就会有一部分扫不到,由于我们向下取整的这个区间是大于等于这个区间的一半的,所以我们可以反过来,从y-(1<<k)到y,这样可以保证不会漏掉数据,并且重复的话也不会对答案产生影响

但是注意!!算k的式子要小心啊

别取错了,一个小BUG就会导致你WA掉...

#include<bits/stdc++.h>
#define ll long long
#define FOR(i,a,b) for(register int i=a;i<=b;i++)
#define ROF(i,a,b) for(register int i=a;i>=b;i--)
using namespace std;
const int N=+;
int n,m;
int a[N];
int f[N][];
int scan()
{
int as=,f=;
char c=getchar();
while(c>''||c<''){if(c=='-') f=-;c=getchar();}
while(c>=''&&c<=''){as=(as<<)+(as<<)+c-'';c=getchar();}
return as*f;
}
void RMQ(int n)
{
FOR(i,,)
{
FOR(j,,n)
{
if(j+(<<i)-<=n)
f[j][i]=max(f[j][i-],f[j+(<<(i-))][i-]);
}
}
}
int main()
{
n=scan();
m=scan();
FOR(i,,n)
a[i]=scan(),f[i][]=a[i];
RMQ(n);
FOR(i,,m)
{
int x,y;
x=scan();
y=scan();
int k=(int)(log((double)(y-x+))/log(2.0));
printf("%d\n",max(f[x][k],f[y-(<<k)+][k]));
}
return ;
}

代码戳这里


接下来我们要讲正事了!!

我们的目光转到钢琴这一题上

思路

首先,我们前缀和储存值,然后在用KMQ,将一些区间内的max求出来

然后我们根据题目要求,由于题目要我们求最大权值,那么我们就求每个可能区间里面的max,将其储存在堆里面.

但是最开始的时候,我们只求出了以某一点为起点的最大值,但是我们最后要求的1~k个最大值的相加

所以我们在每取出一个max是,再去寻找以该点为起点的max,只不过此时的max不是当前的最有解,而是次优解,但是也可能成为新的最有解,

然后题目打这里就差不多啦

#include<bits/stdc++.h>
#define ll long long
#define gc getchar()
#define FOR(i,a,b) for(register int i=a;i<=b;i++)
#define ROF(i,a,b) for(register int i=a;i>=b;i--)
using namespace std;
const int N=+;
int n,m,L,R;
ll sum[N];
int id[N][],f[N][];
ll ans=;
int scan()
{
int as=,f=;char c=gc;
while(c>''||c<''){if(c=='-') f=-;c=gc;}
while(c>=''&&c<=''){as=(as<<)+(as<<)+c-'';c=gc;}
return as*f;
}
//learn new
struct s1
{
int u,l,r,pos;
bool operator <(s1 y) const
{
return sum[pos]-sum[u-]<sum[y.pos]-sum[y.u-];//大的放队尾
}
}tmp;
priority_queue<s1>q;//队列
void init(int &pos,int l,int r)
{
int j=log2(r-l+);
if(f[l][j]>f[r-(<<j)+][j]) pos=id[l][j];
else pos=id[r-(<<j)+][j];
}//这里都懂吧,KMQ的查询
int main()
{
n=scan();m=scan();L=scan();R=scan();
FOR(i,,n)
{
sum[i]=scan();sum[i]+=sum[i-];//前缀和
f[i][]=sum[i];
id[i][]=i;//位置的处理
}
FOR(j,,)
{
FOR(i,,n)
{
if(i+(<<j)->n) break;
if(f[i][j-]>f[i+(<<(j-))][j-]) f[i][j]=f[i][j-],id[i][j]=id[i][j-];
else f[i][j]=f[i+(<<(j-))][j-],id[i][j]=id[i+(<<(j-))][j-];
}//这里其实就是KMQQAQ
}
FOR(i,,n-L+)//入坑silasila......
{
int l=i+L-; int r=min(i+R-,n),pos=,u=i;//随便给pos一个值
init(pos,l,r);//pos在这里赋好了值
tmp=(s1){u,l,r,pos};//然后加入四元组吧..
q.push(tmp);//入队
}
while(m--)
{
tmp=q.top(); q.pop();//弹出顶端,即最优解
int u=tmp.u,l=tmp.l,r=tmp.r,tps=tmp.pos,pos=tmp.pos;//去寻找次
//优解
ans+=sum[tps]-sum[u-];
if(tps>l)
{
init(pos,l,tps-);tmp=(s1){u,l,tps-,pos};q.push(tmp);
}
if(tps<r)
{
init(pos,tps+,r);tmp=(s1){u,tps+,r,pos};q.push(tmp);
}
}
printf("%lld",ans);
return ;
}

代码戳这里

Sequence(ST表)(洛谷P2048)的更多相关文章

  1. 【模板】ST表 洛谷P1816 忠诚

    P1816 忠诚 题目描述 老管家是一个聪明能干的人.他为财主工作了整整10年,财主为了让自已账目更加清楚.要求管家每天记k次账,由于 管家聪明能干,因而管家总是让财主十分满意.但是由于一些人的挑拨, ...

  2. 洛谷 P2048 [NOI2010]超级钢琴 解题报告

    P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...

  3. [洛谷P2048] [NOI2010] 超级钢琴

    洛谷题目链接:[NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号 ...

  4. 洛谷 P2048 [NOI2010]超级钢琴 || Fantasy

    https://www.luogu.org/problemnew/show/P2048 http://www.lydsy.com/JudgeOnline/problem.php?id=2006 首先计 ...

  5. 洛谷 P2048 BZOJ 2006 [NOI2010]超级钢琴

    题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为1至n.第i个音符的美妙度为Ai,其中A ...

  6. 洛谷 P2048 [NOI2010]超级钢琴(优先队列,RMQ)

    传送门 我们定义$(p,l,r)=max\{sum[t]-sum[p-1],p+l-1\leq t\leq p+r-1 \}$ 那么因为对每一个$p$来说$sum[p-1]$是一个定值,所以我们只要在 ...

  7. 洛谷P2048 [NOI2010]超级钢琴 题解

    2019/11/14 更新日志: 近期发现这篇题解有点烂,更新一下,删繁就简,详细重点.代码多加了注释.就酱紫啦! 正解步骤 我们需要先算美妙度的前缀和,并初始化RMQ. 循环 \(i\) 从 \(1 ...

  8. 【洛谷3865】 【模板】ST表(猫树)

    传送门 洛谷 Solution 实测跑的比ST表快!!! 这个东西也是\(O(1)\)的,不会可以看我上一篇Blog 代码实现 代码戳这里

  9. 【洛谷】P2880 [USACO07JAN]平衡的阵容Balanced Lineup(st表)

    题目背景 题目描述: 每天,农夫 John 的N(1 <= N <= 50,000)头牛总是按同一序列排队. 有一天, John 决定让一些牛们玩一场飞盘比赛. 他准备找一群在对列中为置连 ...

随机推荐

  1. Python的文件输入输出,如何追加内容,读取内容,添加内容

    python主要的文件打开的几种访问模式 模式可以为读模式('r').写模式('w')或追加模式('a'),当然还有rb.wb.ab.r+.w+.a+.rb+.wb+.ab+,然而实际从代码上我也没看 ...

  2. Lua工具类

    1.打印table --一个用以打印table的函数 function print_r (t, name) print(pr(t,name)) end function pr (t, name, in ...

  3. 4、shader透明测试(AlphaTest)

    主要用于花草树木 用3D的Plane来实现透明的例子: 给Plane先赋予一个带alpha通道的透明图片,但是此图片此时是看不出来是透明的,如下: 现在我们要做的就是显示透明的效果:现在就用到了alp ...

  4. Spark性能超过Hadoop百倍

    Spark在偷换概念,Hadoop跑硬盘,Spark跑内存,地球人都知道,内存的速度可是远超硬盘一个量级,超过100倍又有什么奇怪的.如果要比,咱们都拿硬盘来跑跑看!

  5. Tensorflow Serving介绍及部署安装

    TensorFlow Serving 是一个用于机器学习模型 serving 的高性能开源库.它可以将训练好的机器学习模型部署到线上,使用 gRPC 作为接口接受外部调用.更加让人眼前一亮的是,它支持 ...

  6. POJ 2135 Farm Tour(最小费用最大流)

    Description When FJ's friends visit him on the farm, he likes to show them around. His farm comprise ...

  7. URAL 1736 Chinese Hockey(网络最大流)

    Description Sergey and Denis closely followed the Chinese Football Championship, which has just come ...

  8. [问题解决]Python locale error: unsupported locale setting

    原文来源:https://stackoverflow.com/questions/14547631/python-locale-error-unsupported-locale-setting 安装f ...

  9. c# mysql blob数据类型

    1.采用stream流形式写入: #region 数据流转换成blob类型数据写入数据库 static public bool StreamToBlob(ref Stream stream, Odbc ...

  10. Android调用Java WebSevice篇之二

    1.创建Activity. package com.web; import org.ksoap2.SoapEnvelope; import org.ksoap2.serialization.SoapO ...