bzoj 1005 组合数学 Purfer Sequence
这题需要了解一种数列: Purfer Sequence
我们知道,一棵树可以用括号序列来表示,但是,一棵顶点标号(1~n)的树,还可以用一个叫做 Purfer Sequence 的数列表示
一个含有 n 个节点的 Purfer Sequence 有 n-2 个数,Purfer Sequence 中的每个数是 1~n 中的一个数
一个定理:一个 Purfer Sequence 和一棵树一一对应
先看看怎么由一个树得到 Purfer Sequence
由一棵树得到它的 Purfer Sequence 总共需要 n-2 步,每一步都在当前的树中寻找具有最小标号的叶子节点(度为 1),将与其相连的点的标号设为 Purfer Sequence 的第 i 个元素,并将此叶子节点从树中删除,直到最后得到一个长度为 n-2 的 Purfer Sequence 和一个只有两个节点的树
看看下面的例子:
假设有一颗树有 5 个节点,四条边依次为:(1, 2), (1, 3), (2, 4), (2, 5),如下图所示:
第 1 步,选取具有最小标号的叶子节点 3,将与它相连的点 1 作为第 1 个 Purfer Number,并从树中删掉节点 3:
第 2 步,选取最小标号的叶子节点 1,将与其相连的点 2 作为第 2 个 Purfer Number,并从树中删掉点 1:
第 3 步,选取最小标号的叶子节点 4,将与其相连的点 2 作为第 3 个 Purfer Number,并从树中删掉点 4:
最后,我们得到的 Purfer Sequence 为:1 2 2
不难看出,上面的步骤得到的 Purfer Sequence 具有唯一性,也就是说,一个树,只能得到一个唯一的 Purfer Sequence
接下来看,怎么由一个 Purfer Sequence 得到一个树
由 Purfer Sequence 得到一棵树,先将所有编号为 1 到 n 的点的度赋初值为 1,然后加上它在 Purfer Sequence 中出现的次数,得到每个点的度
先执行 n-2 步,每一步,选取具有最小标号的度为 1 的点 u 与 Purfer Sequence 中的第 i 个数 v 表示的顶点相连,得到树中的一条边,并将 u 和 v 的度减一
最后再把剩下的两个度为 1 的点连边,加入到树中
我们可以根据上面的例子得到的 Purfer Sequence :1 2 2 重新得到一棵树
Purfer Sequence 中共有 3 个数,可以知道,它表示的树中共有 5 个点,按照上面的方法计算他们的度为下表所示:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 2 | 3 | 1 | 1 | 1 |
第 1 次执行,选取最小标号度为 1 的点 3 和 Purfer Sequence 中的第 1 个数 1 连边:
将 1 和 3 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 1 | 3 | 0 | 1 | 1 |
第 2 次执行,选取最小标号度为 1 的点 1 和 Purfer Sequence 中的第 2 个数 2 连边:
将 1 和 2 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 0 | 2 | 0 | 1 | 1 |
第 3 次执行,将最小标号度为 1 的点 4 和 Purfer Sequence 第 3 个数 2 连边:
将 2 和 4 的度分别减一:
顶点 | 1 | 2 | 3 | 4 | 5 |
度 | 0 | 1 | 0 | 0 | 1 |
最后,还剩下两个点 2 和 5 的度为 1,连边:
至此,一个 Purfer Sequence 得到的树画出来了,由上面的步骤可知,Purfer Sequence 和一个树唯一对应
综上,一个 Purfer Sequence 和一棵树一一对应
有了 Purfer Sequence 的知识,这题怎么搞定呢?
先不考虑无解的情况,从 Purfer Sequence 构造树的过程中可知,一个点的度数减一表示它在 Purfer Sequence 中出现了几次,那么:
假设度数有限制的点的数量为 cnt,他们的度数分别为:d[i]
另:
那么,在 Purfer Sequence 中的不同排列的总数为:
而剩下的 n-2-sum 个位置,可以随意的排列剩余的 n-cnt 个点,于是,总的方案数就应该是:
化简之后为:
以上题解转自http://www.cnblogs.com/zhj5chengfeng/p/3278557.html
//By BLADEVIL
var
n :longint;
d :array[..] of int64;
a, b, c :array[..] of int64; procedure init;
var
i :longint;
begin
read(n);
for i:= to n do read(d[i]);
end; function mul(s1,s2:ansistring):ansistring;
var
len1, len2 :int64;
i, j :longint;
s :ansistring; begin
fillchar(a,sizeof(a),);
fillchar(b,sizeof(b),);
fillchar(c,sizeof(c),);
len1:=length(s1);
len2:=length(s2);
for i:= to len1 do a[(len1-i) div +]:=a[(len1-i) div +]*+ord(s1[i])-;
for i:= to len2 do b[(len2-i) div +]:=b[(len2-i) div +]*+ord(s2[i])-; len1:=(len1+) div ;
len2:=(len2+) div ;
for i:= to len1 do
for j:= to len2 do
begin
c[i+j-]:=c[i]+a[i]*b[j];
c[i+j]:=c[i+j-] div ;
c[i+j-]:=c[i+j-] mod ;
end;
mul:='';
inc(len1);
for i:=len1 downto do
begin
str(c[i],s);
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
if c[i]< then mul:=mul+'';
mul:=mul+s;
end;
while (mul[]='') and (length(mul)>) do delete(mul,,);
end; function divide(s:ansistring;x:int64):ansistring;
var
len :int64;
i :longint; begin
fillchar(a,sizeof(a),);
fillchar(c,sizeof(c),);
len:=length(s);
for i:= to len do a[(len-i) div +]:=a[(len-i) div +]*+ord(s[i])-;
len:=(len+) div ;
for i:=len downto do
begin
c[i]:=c[i]+a[i] div x;
a[i-]:=a[i-]+(a[i] mod x)*;
end;
divide:='';
for i:=len downto do
begin
str(c[i],s);
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
if c[i]< then divide:=divide+'';
divide:=divide+s;
end;
while (divide[]='') and (length(divide)>) do delete(divide,,);
end; procedure main;
var
sum :int64;
flag :boolean;
cnt :int64;
ans, s :ansistring;
i, j :longint; begin
if n= then
begin
if (d[]=) or (d[]=-) then writeln() else writeln();
exit;
end;
sum:=;
flag:=false;
cnt:=;
for i:= to n do if d[i]<>- then
begin
inc(sum,d[i]-);
inc(cnt);
if (d[i]>n-) or (d[i]=) then flag:=true;
end; if flag then
begin
writeln();
exit;
end;
if sum>n- then
begin
writeln();
exit;
end;
flag:=false;
ans:='';
for i:=n--sum to n- do
begin
str(i,s);
ans:=mul(ans,s);
end;
str(n-cnt,s);
for i:= to n--sum do ans:=mul(ans,s);
for i:= to n do
begin
if d[i]<>- then
for j:= to d[i]- do
begin
ans:=divide(ans,j);
end;
end;
writeln(ans);
end; begin
init;
main;
end.
bzoj 1005 组合数学 Purfer Sequence的更多相关文章
- BZOJ 1005 [HNOI2008] 明明的烦恼(组合数学 Purfer Sequence)
题目大意 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为 1 到 N 的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 N( ...
- bzoj 1005 [HNOI2008] 明明的烦恼 (prufer编码)
[HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5907 Solved: 2305[Submit][Status][Di ...
- Purfer Sequence
原文地址:http://www.cnblogs.com/zhj5chengfeng/archive/2013/08/23/3278557.html 我们知道,一棵树可以用括号序列来表示,但是,一棵顶点 ...
- BZOJ 1005 明明的烦恼
Description 自从明明学了树的结构,就对奇怪的树产生了兴趣...... 给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为 ...
- BZOJ 1005: [HNOI2008]明明的烦恼 Purfer序列 大数
1005: [HNOI2008]明明的烦恼 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...
- BZOJ 1005: [HNOI2008]明明的烦恼( 组合数学 + 高精度 )
首先要知道一种prufer数列的东西...一个prufer数列和一颗树对应..然后树上一个点的度数-1是这个点在prufer数列中出现次数..这样就转成一个排列组合的问题了.算个可重集的排列数和组合数 ...
- BZOJ 1005 明明的烦恼 (组合数学)
题解:n为树的节点数,d[ ]为各节点的度数,m为无限制度数的节点数. 则 所以要求在n-2大小的数组中插入tot各序号,共有种插法: 在tot各序号排列中,插第一个节点的 ...
- BZOJ 1005 [HNOI2008]明明的烦恼 (Prufer编码 + 组合数学 + 高精度)
1005: [HNOI2008]明明的烦恼 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5786 Solved: 2263[Submit][Stat ...
- BZOJ 1005 [HNOI2008]明明的烦恼 purfer序列,排列组合
1005: [HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少 ...
随机推荐
- 第三十五篇 类的内置属性(attr属性),包装和授权,__getattr__
双下划线开头的attr方法,都是类内置的方法. 一. 如果没有在类里定义这三个方法,调用的时候就调用类内置的默认的方法 class Too: pass # 类没有定义这三个属性,就用系统默认的方法 t ...
- ECharts 上传图片Example
前端 1.为ECharts准备一个div <div id="main" style="Height:400px"></div> 2.引入 ...
- 贝叶斯网(1)尝试用Netica搭建简单的贝叶斯网并使用贝叶斯公式解释各个bar的结果
近来对贝叶斯网十分感兴趣,按照博客<读懂概率图模型:你需要从基本概念和参数估计开始>给出的第一个例子,试着搭建了一个student网. (1)点击绿F,对条件概率表予以输入(包括两个祖先节 ...
- [转载]深入理解Batch Normalization批标准化
文章转载自:http://www.cnblogs.com/guoyaohua/p/8724433.html Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和 ...
- systemPath
<dependency> <groupId>com.aliyun.mns</groupId> <artifactId>aliyun-sdk-mn ...
- python 的sets list dictionary
http://blog.csdn.net/joseph_happy/article/details/6717412 http://blog.csdn.net/joseph_happy/article/ ...
- bootstrap-table 增加序号列(支持分页)
columns: [ { checkbox: true }, { title: '序号', align: 'center', halign: 'center', formatter: function ...
- BZOJ 1040: [ZJOI2008]骑士 | 在基环外向树上DP
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题解: 我AC了 是自己写的 超开心 的 考虑断一条边 这样如果根节点不选答案一定正确 ...
- JavaScript的大括号的语义
Javascript中大括号"{}"有四种语义作用: 语义1. 组织复合语句,这是最常见的: view source print? 1 if( condition ) { 2 ...
- [ZJOI2007]棋盘制作 (单调栈)
[ZJOI2007]棋盘制作 题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间 ...