BZOJ4361 isn(动态规划+树状数组+容斥原理)
首先dp出长度为i的不下降子序列个数,显然这可以树状数组做到O(n2logn)。
考虑最后剩下的序列是什么,如果不管是否合法只是将序列删至只剩i个数,那么方案数显然是f[i]*(n-i)!。如果不合法,说明这个序列是由一个长度为i+1的非降序列删除一个数得来的,所以将其减去f[i+1]*(i+1)*(n-i-1)。这里的斥显然不会有重复。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
#define P 1000000007
int n,a[N],b[N],f[N],tree[N][N],ans[N],fac[N],t,tot;
inline int inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void add(int x,int k,int p){while (k<=t) inc(tree[x][k],p),k+=k&-k;}
int query(int x,int k){int s=;while (k) inc(s,tree[x][k]),k-=k&-k;return s;}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4361.in","r",stdin);
freopen("bzoj4361.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) b[i]=a[i]=read();
sort(b+,b+n+);
t=unique(b+,b+n+)-b-;
for (int i=;i<=n;i++) a[i]=lower_bound(b+,b+t+,a[i])-b;
f[]=;add(,,);
for (int i=;i<=n;i++)
{
for (int j=;j<=i;j++)
inc(ans[j],f[j]=query(j-,a[i]));
for (int j=;j<=i;j++)
add(j,a[i],f[j]);
}
fac[]=;
for (int i=;i<=n;i++) fac[i]=1ll*i*fac[i-]%P;
for (int i=;i<=n;i++)
inc(tot,(1ll*ans[i]*fac[n-i]%P-1ll*ans[i+]*fac[n-i-]%P*(i+)%P+P)%P);
cout<<tot;
return ;
}
BZOJ4361 isn(动态规划+树状数组+容斥原理)的更多相关文章
- 【bzoj1109】[POI2007]堆积木Klo 动态规划+树状数组
题目描述 Mary在她的生日礼物中有一些积木.那些积木都是相同大小的立方体.每个积木上面都有一个数.Mary用他的所有积木垒了一个高塔.妈妈告诉Mary游戏的目的是建一个塔,使得最多的积木在正确的位置 ...
- 【BZOJ4361】isn 动态规划+树状数组+容斥
[BZOJ4361]isn Description 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案, ...
- bzoj4361 isn(树状数组优化dp+容斥)
4361: isn Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 938 Solved: 485[Submit][Status][Discuss] ...
- BZOJ4361 isn 【树状数组优化DP】*
BZOJ4361 isn Description 给出一个长度为n的序列A(A1,A2-AN).如果序列A不是非降的,你必须从中删去一个数,这一操作,直到A非降为止.求有多少种不同的操作方案,答案模1 ...
- 2015 CCPC-C-The Battle of Chibi (UESTC 1217)(动态规划+树状数组)
赛后当天学长就说了树状数组,结果在一个星期后赖床时才有了一点点思路…… 因为无法提交,不确定是否正确..嗯..有错希望指出,谢谢... 嗯..已经A了..提交地址http://acm.uestc.ed ...
- bzoj4361 isn (dp+树状数组+容斥)
我们先设f[i][j]表示长度为i,以j结尾的不降子序列个数,$f[i][j]=\sum{f[i-1][k]},A[k]<=A[j],k<j$,用树状数组优化一下可以$O(n^2logn) ...
- BZOJ4990 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4990 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...
- BZOJ4993 [Usaco2017 Feb]Why Did the Cow Cross the Road II 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4993 题意概括 有上下两行长度为 n 的数字序列 A 和序列 B,都是 1 到 n 的排列,若 a ...
- BZOJ1264 [AHOI2006]基因匹配Match 动态规划 树状数组
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1264 题意概括 给出两个长度为5*n的序列,每个序列中,有1~n各5个. 求其最长公共子序列长度. ...
随机推荐
- Python语言与其他语言对比
python作为一门高级编程语言,它的诞生虽然很偶然,但是它得到程序员的喜爱却是必然之路,以下是Python与其他编程语言的优缺点对比: 一:简介 1.Python 优势:简单易学,能够把用其他语言制 ...
- VMware下CentOS7安装后,还原虚拟网络后,敲ifconfig不显示局域网ip解决方法
VMware下CentOS7安装后,还原虚拟网络后,敲ifconfig不显示局域网ip,没有出现eth0网卡,不能上网,SSH不能连接,输入ifconfig后如下图: 解决方法: 1.编辑网卡的配置文 ...
- SSM框架理解搭建(虽然是网上拼的,但是实际按照搭建是可以的)——
SpringSpring就像是整个项目中装配bean的大工厂,在配置文件中可以指定使用特定的参数去调用实体类的构造方法来实例化对象.Spring的核心思想是IoC(控制反转),即不再需要程序员去显式地 ...
- Axure RP Extension for Chrome安装
Axure RP Extension for Chrome安装 Axure RP Extension for Chrome是一款谷歌插件,主要可以用来查看原型文件.以前安装插件的时候总是找半天资源,很 ...
- SHELL里执行HIVE导出文件处理成CSV文件
#!/bin/bash #用途: #.当前目录的txt文件批量转csv #.制表符转逗号分隔符 #.NULL去除 #.删除WARN警告 for i in `ls ./*.txt` do sed -e ...
- python字符串编码
python默认编码 python 2.x默认的字符编码是ASCII,默认的文件编码也是ASCII. python 3.x默认的字符编码是unicode,默认的文件编码是utf-8. 中文乱码问题 无 ...
- Scrapy之Cookie和代理
cookie cookie: 获取百度翻译某个词条的结果 一定要对start_requests方法进行重写. 两种解决方案: 1. Request()方法中给method属性赋值成post2. For ...
- java第二章 变量和运算符
Java 基础应用编程—— 变量和运算符 1.Java程序结构 数据类型:确定要存储在内存中的数据的类型. 变量:是存储数据的基本单元 2.变量的概念 变 ...
- Git使用之二:下载远程代码到本地指定文件夹
一.前期工作: 1.准备好本地的文件夹 2.如果后期需要继续以该文件夹进行同步的,则需要配置该文件夹,方法请参考之前的 Git使用之一:创建仓储和提交文件 二.用clone(克隆方式下载) 在本地下 ...
- P1855 榨取kkksc03
P1855 榨取kkksc03 题目描述 以下皆为真实的故事. 洛谷2的团队功能是其他任何oj和工具难以达到的.借助洛谷强大的服务器资源,任何学校都可以在洛谷上零成本的搭建oj并高效率的完成训练计划. ...