Must-read papers on NRL/NE.

github: https://github.com/nate-russell/Network-Embedding-Resources

NRL: network representation learning. NE: network embedding.

Contributed by Cunchao Tu and Yuan Yao.

  1. DeepWalk: Online Learning of Social Representations. Bryan Perozzi, Rami Al-Rfou, Steven Skiena. KDD 2014. papercode

  2. Learning Latent Representations of Nodes for Classifying in Heterogeneous Social Networks. Yann Jacob, Ludovic Denoyer, Patrick Gallinar. WSDM 2014. paper

  3. Non-transitive Hashing with Latent Similarity Componets. Mingdong Ou, Peng Cui, Fei Wang, Jun Wang, Wenwu Zhu.KDD 2015. paper

  4. GraRep: Learning Graph Representations with Global Structural Information. Shaosheng Cao, Wei Lu, Qiongkai Xu.CIKM 2015. paper code

  5. LINE: Large-scale Information Network Embedding. Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, Qiaozhu Me. WWW 2015. paper code

  6. Network Representation Learning with Rich Text Information. Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, Edward Y. Chang. IJCAI 2015. paper code

  7. PTE: Predictive Text Embedding through Large-scale Heterogeneous Text Networks. Jian Tang, Meng Qu, Qiaozhu Mei.KDD 2015. paper code

  8. Heterogeneous Network Embedding via Deep Architectures. Shiyu Chang, Wei Han, Jiliang Tang, Guo-Jun Qi, Charu C. Aggarwal, Thomas S. Huang. KDD 2015. paper

  9. Deep Neural Networks for Learning Graph Representations. Shaosheng Cao, Wei Lu, Xiongkai Xu. AAAI 2016. papercode

  10. Asymmetric Transitivity Preserving Graph Embedding. Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, Wenwu Zhu. KDD 2016. paper

  11. Revisiting Semi-supervised Learning with Graph Embeddings. Zhilin Yang, William W. Cohen, Ruslan Salakhutdinov.ICML 2016. paper

  12. node2vec: Scalable Feature Learning for Networks. Aditya Grover, Jure Leskovec. KDD 2016. paper code

  13. Max-Margin DeepWalk: Discriminative Learning of Network Representation. Cunchao Tu, Weicheng Zhang, Zhiyuan Liu, Maosong Sun. IJCAI 2016. paper code

  14. Structural Deep Network Embedding. Daixin Wang, Peng Cui, Wenwu Zhu. KDD 2016. paper

  15. Community Preserving Network Embedding. Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, Shiqiang Yang.AAAI 2017. paper

  16. Semi-supervised Classification with Graph Convolutional Networks. Thomas N. Kipf, Max Welling. ICLR 2017. papercode

  17. CANE: Context-Aware Network Embedding for Relation Modeling. Cunchao Tu, Han Liu, Zhiyuan Liu, Maosong Sun. ACL 2017. paper code

  18. Fast Network Embedding Enhancement via High Order Proximity Approximation. Cheng Yang, Maosong Sun, Zhiyuan Liu, Cunchao Tu. IJCAI 2017. paper code

  19. TransNet: Translation-Based Network Representation Learning for Social Relation Extraction. Cunchao Tu, Zhengyan Zhang, Zhiyuan Liu, Maosong Sun. IJCAI 2017. paper code

  20. metapath2vec: Scalable Representation Learning for Heterogeneous Networks. Yuxiao Dong, Nitesh V. Chawla, Ananthram Swami. KDD 2017. paper code

  21. Learning from Labeled and Unlabeled Vertices in Networks. Wei Ye, Linfei Zhou, Dominik Mautz, Claudia Plant, Christian Böhm. KDD 2017.

  22. Unsupervised Feature Selection in Signed Social Networks. Kewei Cheng, Jundong Li, Huan Liu. KDD 2017. paper

  23. struc2vec: Learning Node Representations from Structural Identity. Leonardo F. R. Ribeiro, Pedro H. P. Saverese, Daniel R. Figueiredo. KDD 2017. paper code

  24. Inductive Representation Learning on Large Graphs. William L. Hamilton, Rex Ying, Jure Leskovec. Submitted to NIPS 2017. paper code

  25. Variation Autoencoder Based Network Representation Learning for Classification. Hang Li, Haozheng Wang, Zhenglu Yang, Masato Odagaki. ACL 2017. paper

network embedding 需读论文的更多相关文章

  1. Network Embedding 论文小览

    Network Embedding 论文小览 转自:http://blog.csdn.net/Dark_Scope/article/details/74279582,感谢分享! 自从word2vec横 ...

  2. [论文阅读笔记] LouvainNE Hierarchical Louvain Method for High Quality and Scalable Network Embedding

    [论文阅读笔记] LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding 本文结构 ...

  3. 论文阅读:Relation Structure-Aware Heterogeneous Information Network Embedding

    Relation Structure-Aware Heterogeneous Information Network Embedding(RHINE) (AAAI 2019) 本文结构 (1) 解决问 ...

  4. [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximati

    [论文阅读笔记] Fast Network Embedding Enhancement via High Order Proximity Approximation 本文结构 解决问题 主要贡献 主要 ...

  5. [论文阅读笔记] Community aware random walk for network embedding

    [论文阅读笔记] Community aware random walk for network embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 先前许多算法都 ...

  6. [论文阅读笔记] Structural Deep Network Embedding

    [论文阅读笔记] Structural Deep Network Embedding 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 现有的表示学习方法大多采用浅层模型,这可能不能 ...

  7. [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion

    [论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1 ...

  8. [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding

    [论文阅读笔记] Adversarial Mutual Information Learning for Network Embedding 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 ...

  9. 论文解读(Line)《LINE: Large-scale Information Network Embedding》

    论文题目:<LINE: Large-scale Information Network Embedding>发表时间:  KDD 2015论文作者:  Jian Tang, Meng Qu ...

随机推荐

  1. C++_友元1-友元类是什么

    友元函数:不是类的成员函数,但是能够访问类的私有数据成员. 之前有个矛盾就是规定非成员函数不能直接访问类的私有数据,但是这会儿却可以,但那只是针对常规非成员函数而言,特殊的非成员函数就可以访问类的私有 ...

  2. Kibana6.x.x源码分析--如何自定义savedObjectType对象

    上篇说到了如何使用kibana自带的savedObjectType对象,现在我们来自定义一个自己的savedObjectType. 下面的截图是我自己模仿写的保存对象,以及如何在kibana插件中注册 ...

  3. CodeForces - 1110C-Meaningless Operation(打表找规律)

    Can the greatest common divisor and bitwise operations have anything in common? It is time to answer ...

  4. java的Spring学习3- mybatis

    1.java的maven依赖包 <properties> <project.build.sourceEncoding>UTF-8</project.build.sourc ...

  5. v-show, v-if, 以及动态组件的区别

    vue提供了v-if, v-show来动态显示隐藏组件 同时也提供了<component>元素在一个挂载点上动态的切换组件, 通过 is 来决定哪个组件被渲染显示 配合<keep-a ...

  6. 深入剖析PHP输入流 php://input

    另附一个一个连接: http://www.nowamagic.net/academy/detail/12220520 ///////////////////////////////////////// ...

  7. [转] Emmet-前端开发神器

    [From] https://segmentfault.com/a/1190000007812543 Emmet是一款编辑器插件,支持多种编辑器支持.在前端开发中,Emmet 使用缩写语法快速编写 H ...

  8. HTML5实现多文件的上传示例代码

    [转自] http://www.jb51.net/html5/136791.html 主要用到的是<input>的multiple属性 代码如下: <input type=" ...

  9. centeros下安装python3

    一.查看python版本及安装python3 1. which python 可以看到预装的是2.7版本 2.安装依赖包 yum -y groupinstall "Development t ...

  10. 【记录】BurpSuite之Grep-Extract

    借助一次sql注入来说明Grep-Extract的作用 要报出当前数据库中所有表名,这里可以有多种方法,我借助limit语句,以此来说明Grep-Extract的用法.