洛谷P4281 紧急集合 / 聚会
LCA
题目要求找离三个点最近的点,我们先看两个点的情况,自然是找LCA,那么三个点的时候是否与LCA有关呢?
显然,离三个点最近的点一定是在这三个点联通的简单路径上。
可以简单证明一下,假设某个点离a,b,c三个点最近且不在联通这三个点的简单路径上,那么有a,b,c中有两个点一定会经过某个点才能来到该点,换句话说,就是有两个人都要多走一段距离,那为什么不把两个人多走的距离换成让另外一个人走呢?这样显然更优。
而且我们的候选点一定在某两个点的LCA上,同样可以假设改点不在LCA上,那么也可以假设成两个人多走的距离用一个人走来替换,这样我们来到的点又变成了LCA。
再有三个点中每两个点的LCA有三对,必定有两对会重合(三个点的路径只会有两个交点),我们可以发现前面描述的两个点就是这两个不同的LCA。
因此我们的最优点就在不被重合的那个LCA上。
#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
}
const int N = 500005;
int n, m, cnt, t, head[N], depth[N], p[N][20];
struct Edge{ int v, next; }edge[N<<1];
void addEdge(int a, int b){
edge[cnt].v = b, edge[cnt].next = head[a], head[a] = cnt ++;
}
void dfs(int s, int fa){
depth[s] = depth[fa] + 1;
p[s][0] = fa;
for(int i = 1; i <= t; i ++) p[s][i] = p[p[s][i - 1]][i - 1];
for(int i = head[s]; i != -1; i = edge[i].next){
int u = edge[i].v;
if(u == fa) continue;
dfs(u, s);
}
}
int lca(int x, int y){
if(depth[x] < depth[y]) swap(x, y);
for(int i = t; i >= 0; i --){
if(depth[p[x][i]] >= depth[y]) x = p[x][i];
}
if(x == y) return y;
for(int i = t; i >= 0; i --){
if(p[x][i] != p[y][i]) x = p[x][i], y = p[y][i];
}
return p[y][0];
}
int main(){
full(head, -1);
n = read(), m = read();
t = (int)(log(n) / log(2)) + 1;
for(int i = 0; i < n - 1; i ++){
int u = read(), v = read();
addEdge(u, v), addEdge(v, u);
}
depth[0] = -1, dfs(1, 0);
while(m --){
int a = read(), b = read(), c = read();
int x = lca(a, b), y = lca(b, c), z = lca(a, c);
int tmp = 0;
if(x == y) tmp = z; else if(x == z) tmp = y; else if(y == z) tmp = x;
printf("%d %d\n", tmp, depth[a] + depth[b] + depth[c] - depth[x] - depth[y] - depth[z]);
}
return 0;
}
洛谷P4281 紧急集合 / 聚会的更多相关文章
- 【题解】洛谷P4281 [AHOI2008] 紧急集合(求三个点LCA)
洛谷P4281:https://www.luogu.org/problemnew/show/P4281 思路 答案所在的点必定是三个人所在点之间路径上的一点 本蒟蒻一开始的想法是:先求出2个点之间的L ...
- 洛谷 P4281 [AHOI2008] 紧急集合 题解
挺好的一道题,本身不难,就把求两个点的LCA变为求三个点两两求LCA,不重合的点才是最优解.值得一提的是,最后对答案的处理运用差分的思想:假设两点 一点深度为d1,另一点 深度为d2,它们LCA深度为 ...
- 洛谷 P1293 班级聚会
P1293 班级聚会 题目描述 毕业25年以后,我们的主人公开始准备同学聚会.打了无数电话后他终于搞到了所有同学的地址.他们有些人仍在本城市,但大多数人分散在其他的城市.不过,他发现一个巧合,所有地址 ...
- 洛谷P4281 紧急会议
传送门啦 思路: $ Lca $ 这个题要求这个显而易见吧.但是难就难在怎么在树上利用 $ Lca $ 去解决三个点的问题. 首先明确三个点两两的 三个 $ Lca $ 中有一对是相等的,我们也会发现 ...
- 洛谷P3964松鼠聚会
题目 题意:求最小的从某一个点到其余点的切比雪夫距离和. 将一个图中的\((x,y)\)坐标转到新坐标\((x+y,x-y)\)后,图中的曼哈顿距离就是新图中的切比雪夫距离, 证明:分类讨论, 1.\ ...
- P4281 [AHOI2008]紧急集合 / 聚会
P4281 [AHOI2008]紧急集合 / 聚会 lca 题意:求3个点的lca,以及3个点与lca的距离之和. 性质:设点q1,q2,q3 两点之间的lca t1=lca(q1,q2) t2=lc ...
- 「AHOI2008」「LuoguP4281」紧急集合 / 聚会(LCA
题目描述 欢乐岛上有个非常好玩的游戏,叫做“紧急集合”.在岛上分散有N个等待点,有N-1条道路连接着它们,每一条道路都连接某两个等待点,且通过这些道路可以走遍所有的等待点,通过道路从一个点到另一个点要 ...
- 洛谷1640 bzoj1854游戏 匈牙利就是又短又快
bzoj炸了,靠离线版题目做了两道(过过样例什么的还是轻松的)但是交不了,正巧洛谷有个"大牛分站",就转回洛谷做题了 水题先行,一道傻逼匈牙利 其实本来的思路是搜索然后发现写出来类 ...
- 洛谷P1352 codevs1380 没有上司的舞会——S.B.S.
没有上司的舞会 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description Ural大学有N个职员,编号为1~N.他们有 ...
随机推荐
- 01 前言/基础设施 - DevOps之路
01 前言/基础设施 - DevOps之路 文章Github地址,欢迎start:https://github.com/li-keli/DevOps-WiKi 简介 基础架构采用DevOps设计思想, ...
- 关于eclipse tomcat 无法启动(8080,8005,8009端口被占用)的解决方法,附 eclipse tomcat 与 tomcat 并存方式
eclipse 在编译运行时 新建的tomcat连接始终为stopped状态,描述为8080,8005,8009端口被占用. 这是因为在装完tomcat后,tomcat服务已启动,而eclipse仅仅 ...
- 关于NETCORE中的捆绑与最小化 以及与CDN连用
参考文档:MSDN Bundling and minification in ASP.NET Core 细说ASP.NET Core静态文件的缓存方式
- C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 即时消息提醒功能改进
可以给自己的信息管理系统增加一些即时消息提醒功能,简单方便,一般是一行代码就可以发送提醒信息了,方便二次开发,个性化改进. 1:可以用简拼,快速查找内部员工. 2:双击直接可以发QQ消息. 3:双击直 ...
- Php7 开发笔记
Ubuntu环境安装 http://www.jianshu.com/p/1d312d9f1be1 sudo apt-get install python-software-properties sof ...
- vue 饿了么项目笔记
vue 饿了么项目 1.图标字体引用 链接 2.scss 二三倍图切换 1像素边框 链接 3.better-scroll 4.布局 商品主页面 <div id="app"&g ...
- 实用小技巧(一):UIScrollView中上下左右滚动方向的判断
https://www.jianshu.com/p/93e8459b6dae 2017.06.01 01:13* 字数 674 阅读 1201评论 0喜欢 1 2017.06.01 01:13* 字数 ...
- Java 常见编码格式——URL、Base64
数据编码 我们对数据进行编码是因为在某些情况下,不能直接传输中文字符或者其他字符,比如在设置http协议的头部信息或者cookie时,如果value有中文字符,那么就需要将中文字符使用某种编码方式进行 ...
- (一)类数组对象NodeList
NodeList对象的特点: NodeList是一种类数组对象,用于保存一组有序的节点. 可以通过方括号语法来访问NodeList的值,有item方法与length属性. 它并不是Array的实例,没 ...
- C# Note20: 制作延时改变显示的标题栏
前言 在使用wpf构建一个窗体时,其中有这样一个功能,在保存数据或加载数据时,我们希望在改变标题栏的显示以标志当前保存成功的状态或者加载数据的名称信息,而且标题信息更新显示几秒后,再恢复到默认的状态. ...