[SHOI2014]概率充电器(概率+换根dp)
著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看 吧!”
SHOI 概率充电器由n-1 条导线连通了n 个充电元件。进行充电时,每条导 线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率 决定。随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行 间接充电。
作为SHOI 公司的忠实客户,你无法抑制自己购买SHOI 产品的冲动。在排 了一个星期的长队之后终于入手了最新型号的SHOI 概率充电器。你迫不及待 地将SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件 个数的期望是多少呢?
Solution
这题要算期望个数,实际上我们可以直接算出每个原件充电的概率,求和就是期望个数(显然)。
考虑一个元件充电的方式,1.自动充电,2.被儿子充电,3.被父亲充电。
第一次DFS我们要求出后两种方式的概率。
第二次我们要求出节点被父亲充电的概率。
注意要三个条件只要满足一个就可以。
考虑两个时间A和B,我们要求他们必需都发生,那么概率为A*B。
如果需要至少一个发生呢?1-(1-A)*(1-B)。化简后为A+B-A*B
注意到这不只是简单相加,因为如果简单相加的话,就变成A*1+B*1,这个1指的是B/A的所有可能。
问题来了,A和B都发生的概率被算了两次,所以我们要把他减掉。
那么这题的转移方程就容易得出了。
#include<iostream>
#include<cstdio>
#include<vector>
#include<map>
#define N 500005
using namespace std;
const double eps=1e-;
double f[N],ans,g[N];
int a[N],tot,head[N],n;
struct zzh{
int n,to;
double l;
}e[N<<];
inline void add(int u,int v,int l){
e[++tot].n=head[u];
e[tot].to=v;
head[u]=tot;
e[tot].l=(double)l/;
}
void dfs1(int u,int fa){
double an=1.0-(double)a[u]/;
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa){
int v=e[i].to;
dfs1(v,u);
an*=(1.0-f[v]*e[i].l);
}
f[u]=-an;
}
void dfs2(int u,int fa){
for(int i=head[u];i;i=e[i].n)if(e[i].to!=fa){
int v=e[i].to;
double ip=(-f[v]*e[i].l);
if(ip<eps)ip=;
g[v]=(1.0-(-f[u])/ip*(-g[u]))*e[i].l;
dfs2(v,u);
}
}
int main(){
scanf("%d",&n);int u,v,w;
for(int i=;i<n;++i){
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
add(v,u,w);
}
for(int i=;i<=n;++i)scanf("%d",&a[i]);
dfs1(,);
dfs2(,);
for(int i=;i<=n;++i)ans+=-(-f[i])*(-g[i]);
printf("%lf",ans);
return ;
}
f[i]=1−(1−Pi)×∏v∈son[i](1−f[v]×Pi,v)
f[i]=1−(1−Pi)×∏v∈son[i](1−f[v]×Pi,v)
f[i]=1−(1−Pi)×∏v∈son[i](1−f[v]×Pi,v)
[SHOI2014]概率充电器(概率+换根dp)的更多相关文章
- 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP
		
洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...
 - bzoj 3566: [SHOI2014]概率充电器 数学期望+换根dp
		
题意:给定一颗树,树上每个点通电概率为 $q[i]$%,每条边通电的概率为 $p[i]$%,求期望充入电的点的个数. 期望在任何时候都具有线性性,所以可以分别求每个点通电的概率(这种情况下期望=概率 ...
 - [BZOJ4379][POI2015]Modernizacja autostrady[树的直径+换根dp]
		
题意 给定一棵 \(n\) 个节点的树,可以断掉一条边再连接任意两个点,询问新构成的树的直径的最小和最大值. \(n\leq 5\times 10^5\) . 分析 记断掉一条边之后两棵树的直径为 \ ...
 - 2018.10.15 NOIP训练 水流成河(换根dp)
		
传送门 换根dp入门题. 貌似李煜东的书上讲过? 不记得了. 先推出以1为根时的答案. 然后考虑向儿子转移. 我们记f[p]f[p]f[p]表示原树中以ppp为根的子树的答案. g[p]g[p]g[p ...
 - 换根DP+树的直径【洛谷P3761】 [TJOI2017]城市
		
P3761 [TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速公 ...
 - 小奇的仓库:换根dp
		
一道很好的换根dp题.考场上现场yy十分愉快 给定树,求每个点的到其它所有点的距离异或上m之后的值,n=100000,m<=16 只能线性复杂度求解,m又小得奇怪.或者带一个log像kx一样打一 ...
 - 国家集训队 Crash 的文明世界(第二类斯特林数+换根dp)
		
题意  题目链接:https://www.luogu.org/problem/P4827  给定一棵 \(n\) 个节点的树和一个常数 \(k\) ,对于树上的每一个节点 \(i\) ,求出 \( ...
 - Acesrc and Travel(2019年杭电多校第八场06+HDU6662+换根dp)
		
题目链接 传送门 题意 两个绝顶聪明的人在树上玩博弈,规则是轮流选择下一个要到达的点,每达到一个点时,先手和后手分别获得\(a_i,b_i\)(到达这个点时两个人都会获得)的权值,已经经过的点无法再次 ...
 - codeforces1156D    0-1-Tree 换根dp
		
题目传送门 题意: 给定一棵n个点的边权为0或1的树,一条合法的路径(x,y)(x≠y)满足,从x走到y,一旦经过边权为1的边,就不能再经过边权为0的边,求有多少边满足条件? 思路: 首先,这道题也可 ...
 - [Bzoj3743][Coci2015] Kamp【换根Dp】
		
Online Judge:Bzoj3743 Label:换根Dp,维护最长/次长链 题目描述 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的 ...
 
随机推荐
- 移动端和PC端页面常用的弹出层
			
我们在页面的时候,很多时候用到了弹出层,消息提醒,确认框等等,统一样式的弹出框可以使页面更加优美.在此,我整理一下我们项目的移动端和PC端页面常用的弹出层. 一.移动端 我们需在页面引入弹出框的样式和 ...
 - js this的含义以及讲解
			
this关键字是一个非常重要的语法点.毫不夸张地说,不理解它的含义,大部分开发任务都无法完成. 首先,this总是返回一个对象,简单说,就是返回属性或方法“当前”所在的对象. 下面来两个例子来让大家更 ...
 - Java 验证码详解
			
1 使用Servlet实现验证码,涉及的知识点主要为java 绘图技术与session保存数据. HTML页面 <html> <image src='images/logo1.jpg ...
 - 902. Kth Smallest Element in a BST
			
Given a binary search tree, write a function kthSmallest to find the kth smallest element in it. You ...
 - js 判断一个字符在字符串中出现的次数
			
<script type="text/javascript"> var s='djh.doiwe.esd.d.ddd0sdd.d.'; var n=(s.split(' ...
 - Java 线程的生命周期
			
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态,在线程的生命周期中,它要经过新建(New).就绪(Runnable).运行(Running).阻塞(Blocked)和死 ...
 - python之路--动态传参,作用域,函数嵌套
			
一 . 动态传参(重点) * , ** * 与 ** * 在形参位置. * 表示不定参数, 接收的是位置参数 接收到的位置参数的动态传参: 都是元组 def eat(*food): # 在形参这里 ...
 - linux audit审计(7-1)--读懂audit日志
			
auid=0 auid记录Audit user ID,that is the loginuid.当我使用lbh用户登录系统时,再访问audit_test,此时记录的auid为1001,具体日志如下: ...
 - vue 響應接口
			
全局方式: 增加屬性和set()和get(): vue.set(targname,key,vaule) targname:對象名或者數組名 key:字符串 value:任何值 刪除屬性和set()和g ...
 - Java使用RabbitMQ之订阅分发(Topic)
			
使用RabbitMQ进行消息发布和订阅,生产者将消息发送给转发器(exchange),转发器根据路由键匹配已绑定的消息队列并转发消息,主题模式支持路由键的通配. 生产者代码: package org. ...