P1040 加分二叉树 区间dp
题目描述
设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtreesubtree(也包含treetree本身)的加分计算方法如下:
subtreesubtree的左子树的加分× subtreesubtree的右子树的加分+subtreesubtree的根的分数。
若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。
试求一棵符合中序遍历为(1,2,3,…,n1,2,3,…,n)且加分最高的二叉树treetree。要求输出;
(1)treetree的最高加分
(2)treetree的前序遍历
输入输出格式
输入格式:
第11行:11个整数n(n<30)n(n<30),为节点个数。
第22行:nn个用空格隔开的整数,为每个节点的分数(分数<100<100)。
输出格式:
第11行:11个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000)。
第22行:nn个用空格隔开的整数,为该树的前序遍历。
输入输出样例
5
5 7 1 2 10
145
3 1 2 4 5 难以下手 看到是dfs专题一直想着用dfs来解
这题用区间dp很方便能解
f(i,j)={1 (i>j) ; 顶点i的分数 (i=j) ; max(f{i,k-1}*f{k+1,j}+顶点i的分数 (i<j) 『k取i~j』) root[i, j]——顶点i..顶点j所组成的子树达到最大分值时的根编号。当i = j时,root[i, i] := i。
再根据树来输出
记忆化dp
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 100
int root[N][N];
LL dp[N][N];
int n;
int first;
LL search1(int L,int R)//区间记忆化dp
{
if(L>R)return ;//说明为一棵空树
if(dp[L][R]==-)
{
rep(k,L,R)
{
LL cnt=search1(L,k-)*search1(k+,R)+dp[k][k];
if(cnt>dp[L][R])
{
dp[L][R]=cnt;
root[L][R]=k;
}
}
}
return dp[L][R];
} void print(int L,int R)
{
if(L>R)return ;
if(first)first=;
else printf(" ");
int x=root[L][R];
printf("%d",x);
print(L,x-);
print(x+,R);
return;
}
int main()
{
RI(n);
rep(i,,n)
rep(j,,n)
dp[i][j]=-;
rep(i,,n)
{
int x;
RI(x);
dp[i][i]=x;//每个顶点的值
root[i][i]=i;//每个点单独成一棵树 根即为自己
}
cout<<search1(,n)<<endl;
first=;
print(,n);
}
非记忆化
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 100
int root[N][N];
LL dp[N][N];
int n;
int first; void print(int L,int R)
{
if(L>R)return ;
if(first)first=;
else printf(" ");
int x=root[L][R];
printf("%d",x);
print(L,x-);
print(x+,R);
return;
}
int main()
{
RI(n);
rep(i,,n)
rep(j,,n)
dp[i][j]=-;
rep(i,,n)
{
int x;
RI(x);
dp[i][i]=x;//每个顶点的值
dp[i][i-]=;
root[i][i]=i;//每个点单独成一棵树 根即为自己
}
rep(len,,n)
rep(i,,n)
{
int j=i+len;
if(j<=n)
rep(k,i,j)
if(dp[i][j]<dp[i][k-]*dp[k+][j]+dp[k][k])
{
dp[i][j]=dp[i][k-]*dp[k+][j]+dp[k][k];
root[i][j]=k;
}
}
cout<<dp[][n]<<endl;
first=;
print(,n);
}
更加简洁
#include<iostream>
#include<cstdio>
using namespace std;
int n,v[],f[][],i,j,k,root[][];
void print(int l,int r){
if(l>r)return;
if(l==r){printf("%d ",l);return;}
printf("%d ",root[l][r]);
print(l,root[l][r]-);
print(root[l][r]+,r);
}
int main() {
scanf("%d",&n);
for( i=; i<=n; i++) scanf("%d",&v[i]);
for(i=; i<=n; i++) {f[i][i]=v[i];f[i][i-]=;}
for(i=n; i>=; i--)
for(j=i+; j<=n; j++)
for(k=i; k<=j; k++) {
if(f[i][j]<(f[i][k-]*f[k+][j]+f[k][k])) {
f[i][j]=f[i][k-]*f[k+][j]+f[k][k];
root[i][j]=k;
}
}
printf("%d\n",f[][n]);
print(,n);
return ;
}
P1040 加分二叉树 区间dp的更多相关文章
- 洛谷P1040 加分二叉树(区间dp)
P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...
- [Swust OJ 360]--加分二叉树(区间dp)
题目链接:http://acm.swust.edu.cn/problem/360/ Time limit(ms): 1000 Memory limit(kb): 65535 Description ...
- cogs 106. [NOIP2003] 加分二叉树(区间DP)
106. [NOIP2003] 加分二叉树 ★☆ 输入文件:jfecs.in 输出文件:jfecs.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] 设 一个 n ...
- 【洛谷】P1040 加分二叉树
[洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...
- 【Luogu】P1040加分二叉树(区间DP)
题目链接 区间DP,因为中序遍历的性质:区间[l,r]的任何一个数都可以是该区间的根节点. 更新权值的时候记录区间的根节点,最后DFS输出. 见代码. #include<cstdio> # ...
- 洛谷P1040 加分二叉树(树形dp)
加分二叉树 时间限制: 1 Sec 内存限制: 125 MB提交: 11 解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...
- [NOIP2003] 提高组 洛谷P1040 加分二叉树
题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...
- P1040 加分二叉树
转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...
- 【luogu P1040 加分二叉树】 题解
题目链接:https://www.luogu.org/problemnew/show/P1040 今天考试考了一个区间DP...没错就是这个... 太蒟了真是连区间DP都不会...看了看题解也看不懂, ...
随机推荐
- 借助dubbo-admin来管理你的服务
1. Github上下载最新的dubbo源码包并解压 2. 修改配置信息(打开 dubbo-admin/src/main/webapp/WEB-INF下的dubbo.properties,修 ...
- String类型作为方法的形参
代码: public class TestString { String str = new String("good"); char [] ch = {'a','b','c'}; ...
- LuoGu P1939 【模板】矩阵加速(数列)
板子传送门 矩阵快速幂学完当然要去搞一搞矩阵加速啦 (矩阵加速相对于矩阵快速幂来说就是多了一个构造矩阵的过程) 关于怎样来构造矩阵,这位大佬讲的很好呢 构造出矩阵之后,我们再去用矩阵快速幂乘出来,取[ ...
- 基于ARM Cortex-M和Eclipse的SWO单总线输出
最近在MCU on Eclipse网站上看到Erich Styger所写的一篇有关通过SWD的跟踪接口SWO获取ARM Cortex-M相关信息的文章,文章结构明晰,讲解透彻,本人深受启发,特意将其翻 ...
- python 面向对象编程(初级篇)
飞机票 概述 面向过程:根据业务逻辑从上到下写垒代码 函数式:将某功能代码封装到函数中,日后便无需重复编写,仅调用函数即可 面向对象:对函数进行分类和封装,让开发“更快更好更强...” 面向过程编程最 ...
- SpringBoot全局日志管理(AOP)
1.在pom.xml中引入aop的jar包 <dependency> <groupId>org.springframework.boot</groupId> < ...
- collections模块
collections模块在内置数据类型(dict.list.set.tuple)的基础上,还提供了几个额外的数据类型:ChainMap.Counter.deque.defaultdict.named ...
- 流媒体服务器SRS部署
github地址:https://github.com/ossrs/srs 1,srs下载 http://ossrs.net/srs.release/releases/index.html 选择正式发 ...
- python Com接口测试
import comtypes.client as cc import comtypes tlb_id = comtypes.GUID("{D85C6069-D628-4276-93C3-9 ...
- JS实现简单的观察者模式
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...