题目描述

设一个nn个节点的二叉树tree的中序遍历为(1,2,3,…,n1,2,3,…,n),其中数字1,2,3,…,n1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第ii个节点的分数为di,treedi,tree及它的每个子树都有一个加分,任一棵子树subtreesubtree(也包含treetree本身)的加分计算方法如下:

subtreesubtree的左子树的加分× subtreesubtree的右子树的加分+subtreesubtree的根的分数。

若某个子树为空,规定其加分为11,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n1,2,3,…,n)且加分最高的二叉树treetree。要求输出;

(1)treetree的最高加分

(2)treetree的前序遍历

输入输出格式

输入格式:

第11行:11个整数n(n<30)n(n<30),为节点个数。

第22行:nn个用空格隔开的整数,为每个节点的分数(分数<100<100)。

输出格式:

第11行:11个整数,为最高加分(Ans \le 4,000,000,000≤4,000,000,000)。

第22行:nn个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1: 复制

5
5 7 1 2 10
输出样例#1: 复制

145
3 1 2 4 5 难以下手 看到是dfs专题一直想着用dfs来解
这题用区间dp很方便能解
f(i,j)={1 (i>j) ; 顶点i的分数 (i=j) ; max(f{i,k-1}*f{k+1,j}+顶点i的分数 (i<j) 『k取i~j』)  root[i, j]——顶点i..顶点j所组成的子树达到最大分值时的根编号。当i = j时,root[i, i] := i。
再根据树来输出
记忆化dp 
#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 100
int root[N][N];
LL dp[N][N];
int n;
int first;
LL search1(int L,int R)//区间记忆化dp
{
if(L>R)return ;//说明为一棵空树
if(dp[L][R]==-)
{
rep(k,L,R)
{
LL cnt=search1(L,k-)*search1(k+,R)+dp[k][k];
if(cnt>dp[L][R])
{
dp[L][R]=cnt;
root[L][R]=k;
}
}
}
return dp[L][R];
} void print(int L,int R)
{
if(L>R)return ;
if(first)first=;
else printf(" ");
int x=root[L][R];
printf("%d",x);
print(L,x-);
print(x+,R);
return;
}
int main()
{
RI(n);
rep(i,,n)
rep(j,,n)
dp[i][j]=-;
rep(i,,n)
{
int x;
RI(x);
dp[i][i]=x;//每个顶点的值
root[i][i]=i;//每个点单独成一棵树 根即为自己
}
cout<<search1(,n)<<endl;
first=;
print(,n);
}

非记忆化

#include<bits/stdc++.h>
using namespace std;
//input by bxd
#define rep(i,a,b) for(int i=(a);i<=(b);i++)
#define repp(i,a,b) for(int i=(a);i>=(b);i--)
#define RI(n) scanf("%d",&(n))
#define RII(n,m) scanf("%d%d",&n,&m)
#define RIII(n,m,k) scanf("%d%d%d",&n,&m,&k)
#define RS(s) scanf("%s",s);
#define LL long long
#define pb push_back
#define fi first
#define REP(i,N) for(int i=0;i<(N);i++)
#define CLR(A,v) memset(A,v,sizeof A)
///////////////////////////////////
#define inf 0x3f3f3f3f
#define N 100
int root[N][N];
LL dp[N][N];
int n;
int first; void print(int L,int R)
{
if(L>R)return ;
if(first)first=;
else printf(" ");
int x=root[L][R];
printf("%d",x);
print(L,x-);
print(x+,R);
return;
}
int main()
{
RI(n);
rep(i,,n)
rep(j,,n)
dp[i][j]=-;
rep(i,,n)
{
int x;
RI(x);
dp[i][i]=x;//每个顶点的值
dp[i][i-]=;
root[i][i]=i;//每个点单独成一棵树 根即为自己
}
rep(len,,n)
rep(i,,n)
{
int j=i+len;
if(j<=n)
rep(k,i,j)
if(dp[i][j]<dp[i][k-]*dp[k+][j]+dp[k][k])
{
dp[i][j]=dp[i][k-]*dp[k+][j]+dp[k][k];
root[i][j]=k;
}
}
cout<<dp[][n]<<endl;
first=;
print(,n);
}

更加简洁

#include<iostream>
#include<cstdio>
using namespace std;
int n,v[],f[][],i,j,k,root[][];
void print(int l,int r){
if(l>r)return;
if(l==r){printf("%d ",l);return;}
printf("%d ",root[l][r]);
print(l,root[l][r]-);
print(root[l][r]+,r);
}
int main() {
scanf("%d",&n);
for( i=; i<=n; i++) scanf("%d",&v[i]);
for(i=; i<=n; i++) {f[i][i]=v[i];f[i][i-]=;}
for(i=n; i>=; i--)
for(j=i+; j<=n; j++)
for(k=i; k<=j; k++) {
if(f[i][j]<(f[i][k-]*f[k+][j]+f[k][k])) {
f[i][j]=f[i][k-]*f[k+][j]+f[k][k];
root[i][j]=k;
}
}
printf("%d\n",f[][n]);
print(,n);
return ;
}

P1040 加分二叉树 区间dp的更多相关文章

  1. 洛谷P1040 加分二叉树(区间dp)

    P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di, ...

  2. [Swust OJ 360]--加分二叉树(区间dp)

    题目链接:http://acm.swust.edu.cn/problem/360/ Time limit(ms): 1000 Memory limit(kb): 65535   Description ...

  3. cogs 106. [NOIP2003] 加分二叉树(区间DP)

    106. [NOIP2003] 加分二叉树 ★☆   输入文件:jfecs.in   输出文件:jfecs.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 设 一个 n ...

  4. 【洛谷】P1040 加分二叉树

    [洛谷]P1040 加分二叉树 题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数 ...

  5. 【Luogu】P1040加分二叉树(区间DP)

    题目链接 区间DP,因为中序遍历的性质:区间[l,r]的任何一个数都可以是该区间的根节点. 更新权值的时候记录区间的根节点,最后DFS输出. 见代码. #include<cstdio> # ...

  6. 洛谷P1040 加分二叉树(树形dp)

    加分二叉树 时间限制: 1 Sec  内存限制: 125 MB提交: 11  解决: 7 题目描述 设一个n个节点的二叉树tree的中序遍历为(l,2,3,...,n),其中数字1,2,3,...,n ...

  7. [NOIP2003] 提高组 洛谷P1040 加分二叉树

    题目描述 设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号.每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都 ...

  8. P1040 加分二叉树

    转自:(http://www.cnblogs.com/geek-007/p/7197439.html) 经典例题:加分二叉树(Luogu 1040) 设一个 n 个节点的二叉树 tree 的中序遍历为 ...

  9. 【luogu P1040 加分二叉树】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1040 今天考试考了一个区间DP...没错就是这个... 太蒟了真是连区间DP都不会...看了看题解也看不懂, ...

随机推荐

  1. LuoGu P1352 没有上司的舞会

    题目传送门 这可能是最简单的树形Dp了吧 对于每个人,要么他来,他的下属不来 要么他不来,他的下属爱来不来 于是设计状态: f[i][0/1]表示以i为根的子树中最大能达到的快乐值(i这个人选或者不选 ...

  2. Oracle Ora 错误解决方案合集

    注:本文来源于 < Oracle学习笔记 --- Oracle ORA错误解决方案 > ORA-00001: 违反唯一约束条件 (.)错误说明:当在唯一索引所对应的列上键入重复值时,会触发 ...

  3. 关于python3链接虚拟机MongoDB 遇到的问题总结

    pymongo.errors.ServerSelectionTimeoutError: 192.168.12.230:27017: [Errno 61] Connection refused 1.如果 ...

  4. django 中session的存储和获取

  5. D3.js 添加zoom缩放功能后dblclick双击也会放大的问题

    svg.call(zoom).on("dblclick.zoom", null); https://stackoverflow.com/questions/25007466/d3- ...

  6. ubuntu 调整分辨率

    修改 /etc/X11/xorg.conf配置文件即可

  7. 爬虫----模拟用户登录gitHub

    #第二次请求:带着初始cookie和TOKEN发送POST请求给登录页面,带上账号密码 data={ 'commit':'Sign in', 'utf8':'✓', 'authenticity_tok ...

  8. cf862d 交互式二分

    /* 二分搜索出一个01段或10即可 先用n个0确定1的个数num 然后测试区间[l,mid]是否全是0或全是1 如果是,则l=mid,否则r=mid,直到l+1==r 然后再测试l是1还是r是1 如 ...

  9. 20165314 Linux安装及学习

    Linux的安装 安装虚拟机比我想象中要来的简单,虽然在这过程中出现了一些粗心大意导致的问题,但是重新再做一遍,问题就都解决了,比如: 未能加载虚拟光盘 在云班课的得到了同学的提示下我把虚拟机桌面的光 ...

  10. Fiddler抓包1-抓firefox上https请求

    前言 fiddler是一个很好的抓包工具,默认是抓http请求的,对于pc上的https请求,会提示网页不安全,这时候需要在浏览器上安装证书. 一.网页不安全 1.用fiddler抓包时候,打开百度网 ...