大规模机器学习:

线性回归的梯度下降算法:Batch gradient descent(每次更新使用全部的训练样本)

批量梯度下降算法(Batch gradient descent):

每计算一次梯度会遍历全部的训练样本,如果训练样本的比较多时,内存消耗过大。

随机梯度下降算法:

1、 首先将随机打乱的训练样本数据

2、 外循环:(一般2—10次即可,若内循环中次数100000以上,则一次即可)

内循环:遍历所有的训练样本,每次梯度下降时使用一个样本计算梯度。

与批量梯度像算法相比,其下降曲线不停,图中右侧红色表示批量梯度下降算法,洋红表示随机梯度下降算法。

Mini-Batch梯度下降算法

1、 设置每次遍历的样本数b

2、 外循环:

内循环:遍历所有的样本,每b个样本更新一次梯度

对比:

批量下降:每次梯度更新使用全部的样本

随机下将:每次梯度更新使用1个样本

Mini-batch:每次梯度更新使用b个样本,b>1,小于全部的样本数。

随机梯度下降算法的收敛:

1、 在更新梯度前计算损失函数:

2、 比如:绘制损失函数的曲线每1000个样本

梯度下降算法对比(批量下降/随机下降/mini-batch)的更多相关文章

  1. 监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  2. 机器学习算法(优化)之一:梯度下降算法、随机梯度下降(应用于线性回归、Logistic回归等等)

    本文介绍了机器学习中基本的优化算法—梯度下降算法和随机梯度下降算法,以及实际应用到线性回归.Logistic回归.矩阵分解推荐算法等ML中. 梯度下降算法基本公式 常见的符号说明和损失函数 X :所有 ...

  3. 监督学习:随机梯度下降算法(sgd)和批梯度下降算法(bgd)

    线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就 ...

  4. flink 批量梯度下降算法线性回归参数求解(Linear Regression with BGD(batch gradient descent) )

    1.线性回归 假设线性函数如下: 假设我们有10个样本x1,y1),(x2,y2).....(x10,y10),求解目标就是根据多个样本求解theta0和theta1的最优值. 什么样的θ最好的呢?最 ...

  5. tensorflow随机梯度下降算法使用滑动平均模型

    在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现.在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模 ...

  6. 【转】梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  7. 梯度下降算法以及其Python实现

    一.梯度下降算法理论知识 我们给出一组房子面积,卧室数目以及对应房价数据,如何从数据中找到房价y与面积x1和卧室数目x2的关系?   为了实现监督学习,我们选择采用自变量x1.x2的线性函数来评估因变 ...

  8. 三种梯度下降算法的区别(BGD, SGD, MBGD)

    前言 我们在训练网络的时候经常会设置 batch_size,这个 batch_size 究竟是做什么用的,一万张图的数据集,应该设置为多大呢,设置为 1.10.100 或者是 10000 究竟有什么区 ...

  9. Spark MLib:梯度下降算法实现

    声明:本文参考< 大数据:Spark mlib(三) GradientDescent梯度下降算法之Spark实现> 1. 什么是梯度下降? 梯度下降法(英语:Gradient descen ...

随机推荐

  1. Zabbix-proxy安装部署

    原文链接:https://www.cnblogs.com/irockcode/p/6754659.html 环境: 因为公司需要监控远程客户机,但server端无法主动连接agent端,客户端可以连接 ...

  2. 没有上司的舞会 codevs 1380

    上树DP,记忆化搜索. 本题老师讲的方法是直接树形DP,但是由于我对树并不够了解,什么dfs也不想尝试(虽然感觉自己可以搞),于是搞了个结构体存点以及该点的信息,用f[i][j]作为记忆化数组.以后最 ...

  3. [bzoj1717][Milk Patterns 产奶的模式]

    题目链接 思路 先求出后缀数组,并且求出LCP.二分一下长度len.check的时候就是看有没有连续的k个后缀的LCP大于len.也就是判断是不是有连续的k-1个height大于len. 代码 #in ...

  4. 第二篇:用Android Studio编写Hello World

    将Android Studio的环境搭建好后,第一个写Hello World测试程序.Android Studio v3.2.1. 一.新建工程 点击Start a new Android Studi ...

  5. OmniPlan,一款让你无法自拔的项目管理工具(仅适用于MAC系统)

      OmniPlan 大家都知道Windows系统可以使用project来方便的管理跟踪项目的各项任务,那么Mac系统有没有这样专业级的项目管理软件了?答案是有,今天给大家推荐的Mac系统下的项目管理 ...

  6. Day23--Python--常用模块02--序列化,configparser

    1. 序列化 把对象打散成bytes或者字符串. 方便存储和传输 序列化 把bytes或者字符串转换回对象. 反序列化 2. pickle(比较重要) 把python中所有的对象都可以转化成bytes ...

  7. 论文总结(negFIN: An efficient algorithm for fast mining frequent itemsets)

    一.论文整体思路: 作者提出了一种基于前缀树的数据结构,NegNodeset,其实是对之前前缀树的一种改进,主要区别在于采用了位图编码,通过这种数据结构产生的算法称为negFIN. negFIN算法高 ...

  8. JS学习笔记Day5

    一.变量的作用域 1.作用域:变量的作用范围 2.全局变量:变量在整个程序都是有效的(从程序开始到程序结束变量均有效)在函数体外部定义的变量都是全局变量:在函数体内部 没有用var定义的变量也有可能是 ...

  9. Luogu P2463 [SDOI2008]Sandy的卡片

    题目链接 \(Click\) \(Here\) 真的好麻烦啊..事实证明,理解是理解,一定要认认真真把板子打牢,不然调锅的时候真的会很痛苦..(最好是八分钟能无脑把\(SA\)码对的程度\(QAQ\) ...

  10. Java基础方法整理

    方法 9.1方法概述 方法就是用来完成解决某件事情或实现某个功能的办法 可以通过在程序代码中引用方法名称和所需的参数,实现在该程序中执行(或称调用)该方法.方法,一般都有一个返回值,用来作为事情的处理 ...