传送门

参考资料:

  [1]:http://www.voidcn.com/article/p-huucvank-dv.html

题意:

  题意就是找一个连续的子区间,使它的和的绝对值最接近target。

题解:

  这题的做法是先预处理出前缀和,然后对前缀和进行排序,再用尺取法贪心的去找最合适的区间。

  要注意的是尺取法时首尾指针一定不能相同,因为这时区间相减结果为0,但实际上区间为空,这是不存在的,可能会产生错误的结果。

  处理时,把(0,0)这个点也放进数组一起排序,比单独判断起点为1的区间更方便。

  还有ans初始化的值INF一定要大于t的最大值。

  最后说说这个题最重要的突破口,对前缀和排序。为什么这么做是对的呢?

  因为这题是取区间的和的绝对值,所以所以用sum[r]-sum[l] 和 sum[l]-sum[r]是没有区别的。

  这样排序后,把原来无序的前缀和变成有序的了,就便于枚举的处理,并且不影响最终结果。

  以上分析来自参考资料[1]。

AC代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
#define P pair<int ,int >
const int maxn=1e5+; int n,k;
P p[maxn]; bool cmp(P _a,P _b){
return _a.second < _b.second;
}
void Solve(int t)
{
int l=,r=;
int resL=p[l].first,resR=p[r].first;//先假设区间[1,p[1].first]为解
int resSum=p[r].second-p[l].second;
while(r <= n)
{
int curSum=p[r].second-p[l].second;
if(abs(curSum-t) < abs(resSum-t))//判断是否可以更新 resSum
{
resSum=curSum;
resL=p[l].first;
resR=p[r].first;
}
if(curSum < t)//如果当前区间值过小,增大当前值
r++;
else if(curSum > t)//如果当前区间值过大,减小当前值
l++;
else
break;
if(l == r)
r++;
}
if(resL > resR)
swap(resL,resR);
printf("%d %d %d\n",resSum,resL+,resR);//while()循环中做区间减法时始终左边界一直被减掉
}
int main()
{
// freopen("C:\\Users\\lenovo\\Desktop\\in.txt\\poj2566.txt","r",stdin);
while(~scanf("%d%d",&n,&k),n != || k != )
{
int sum=;
for(int i=;i <= n;++i)
{
int val;
scanf("%d",&val);
sum += val;
p[i]=P(i,sum);
}
p[]=P(,);
sort(p,p+n+,cmp);
while(k--)
{
int t;
scanf("%d",&t);
Solve(t);
}
}
return ;
}

我的理解:

  为什么对前缀和用尺取法是正确的呢?

  定义 pair<int ,int > 型变量 p[ maxn ];

  p[ i ].first : 右边界;

  p[ i ].second : 前 p[ i ].first 项和;

  将 p 按前缀和从小到大排序后,如图所示:

  

  纵坐标 : 排序后的前缀和

  假设 ( p[b].second-p[a].second ) 距 t 最近 , resSum = p[b].second-p[a].second;

  问题1:当 R 来到区间(a,b)时,L 有可能超过 a 吗?

  答案:不会。

  分析如下:当 a < R < b , L = a 时, 令 curSum=p[R].second-p[L].second;

  易得 curSum < resSum;

  根据 Solve() 中 while() 循环的代码,只由当 curSum > target 时,才会使 L++;

  假设 curSum > target , 则 resSum > curSum > target,那么答案就为 curSum 所标示的区间而不是resSum 所表示的区间,与假设不符;
  故当 L = a , a < R < b 时,curSum < target ,直到 R 来到 b 。

  问题2:当 L < a 时,R 有可能超过 b 吗?

  答案:不会。

  分析如下:当 L < a , R = b 时,令 curSum=p[R].second-p[L].second;

  易得 curSum > resSum;

  根据 Solve() 中 while() 循环的代码,只由当 curSum < target 时,才会使R++;

  假设 curSum < target , 则 resSum < curSum < target,那么答案就为 curSum 所标示的区间而不是resSum 所表示的区间,与假设不符;

  故当 R = b , L < a 时,curSum > target ,直到 L 来到 a 。

  综上所述,L,R一定会来到答案所对应的区间。

  问题3:为什么要加入 (0,0)点?

  根据Solve()中的while()循环可知,curSum求的是L,R区间的差集(大-小)的和,如果答案的左区间为 1 呢?

  不加入 (0,0) 点就永远也不可能使某两区间的差集(大-小)包含 1 .

  或者说可以另用一重循环判断,感觉加入 (0,0)点更美观,哈哈哈。

poj 2566"Bound Found"(尺取法)的更多相关文章

  1. POJ 2566 Bound Found(尺取法,前缀和)

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5207   Accepted: 1667   Spe ...

  2. poj 2566 Bound Found 尺取法 变形

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 2277   Accepted: 703   Spec ...

  3. poj 2566 Bound Found 尺取法

    一.首先介绍一下什么叫尺取 过程大致分为四步: 1.初始化左右端点,即先找到一个满足条件的序列. 2.在满足条件的基础上不断扩大右端点. 3.如果第二步无法满足条件则到第四步,否则更新结果. 4.扩大 ...

  4. POJ 2566 Bound Found 尺取 难度:1

    Bound Found Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 1651   Accepted: 544   Spec ...

  5. poj 2566 Bound Found(尺取法 好题)

    Description Signals of most probably extra-terrestrial origin have been received and digitalized by ...

  6. poj 3061(二分 or 尺取法)

    传送门:Problem 3061 https://www.cnblogs.com/violet-acmer/p/9793209.html 马上就要去上课了,先献上二分AC代码,其余的有空再补 题意: ...

  7. POJ 3061 Subsequence ( 尺取法)

    题目链接 Description A sequence of N positive integers (10 < N < 100 000), each of them less than ...

  8. poj 3320 复习一下尺取法

    尺取法(two point)的思想不难,简单来说就是以下三步: 1.对r point在满足题意的情况下不断向右延伸 2.对l point前移一步 3.  回到1 two point 对连续区间的问题求 ...

  9. POJ 3061 Subsequence ( 二分 || 尺取法 )

    题意 : 找出给定序列长度最小的子序列,子序列的和要求满足大于或者等于 S,如果存在则输出最小长度.否则输出 0(序列的元素都是大于 0 小于10000) 分析 : 有关子序列和的问题,都可以考虑采用 ...

随机推荐

  1. Maven 项目 无缘无故报错:版本冲突,其他机器上正常-提交的时候报冲突怎么也解决不掉

    2018年: maven突然之间报错了,显示版本冲突,但是其他的机器是好的, 使用命令:mvn compile -P dev -e; 看看测试环境有没有问题,还是有问题.而且,刚开始只是报错:erro ...

  2. 阿里云服务器晚上运行定时任务报Too many connections

    1. 相关查询连接数的命令 mysql>show variables like '%max_connections%'; +-------------------------+--------- ...

  3. 三、ASP.NET Core 部署Linux

    预备工作 1.删除dotnet core sdk sudo yum erase libunwind libicu 2.删除链接 sudo rm -rf /usr/local/bin 3.sudo yu ...

  4. LODOP字体不识别 英文字母连起来 引号不正常

    打印超文本的时候,有时候会发现html中设置的css样式显示不正常,字体根本不是设置的字体,这种情况有可能是:1.该操作系统没有安装自己指定的那种字体,那么没有安装自然就不能显示设置的字体.2.该操作 ...

  5. mvc 学前必知

    MVC无人不知,可很多程序员对MVC的概念的理解似乎有误,换言之他们一直在错用MVC,尽管即使如此软件也能被写出来,然而软件内部代码的组织方式却是不科学的,这会影响到软件的可维护性.可移植性,代码的可 ...

  6. django--orm关系字段(ForeignKey、OneToOneField、ManyToManyField)详解

    django中的关系字段 1.ForeignKey字段,即外键字段,对应一对多的情况,列如:一本书对应一个出版社,一个出版社可对应多本书. 2.ManyToManyFiled字段,即多对多字段,对应数 ...

  7. DRF 视图和路由

    Django Rest Feamework 视图和路由 DRF的视图 APIView 我们django中写CBV的时候继承的是View,rest_framework继承的是APIView,那么他们两个 ...

  8. 洛谷P1063能量项链题解

    $题目$ 不得不说,最近我特别爱刷这种区间DP题,因为这个跟其他的DP有些不一样的地方,主要是有一定的套路,就是通过小区间的状态更新大区间,从而得到原题给定区间的最优解. $但是$ 这个题应该跟$石子 ...

  9. jsp大学作业:jsp编写单选,复选判断题及得分情况

    project_1_1.jsp <%@ page contentType="text/html;charset=utf-8" language="java" ...

  10. 「Splay」普通平衡树模板

    口诀: $rotate$:先上再下,最后自己 $splay$:祖父未到旋两次,三点一线旋父亲,三点折线旋自己. $delete$:没有儿子就删光.单个儿子删自己.两个儿子找前驱. 易错点: $rota ...