代码如下:

"""
下面的方法是用kmeans方法进行聚类,用calinski_harabaz_score方法评价聚类效果的好坏
大概是类间距除以类内距,因此这个值越大越好 """
import matplotlib.pyplot as plt
from sklearn.datasets.samples_generator import make_blobs
from sklearn.cluster import KMeans
from sklearn import metrics
"""
下面是生成一些样本数据
X为样本特征,Y为样本簇类别, 共1000个样本,每个样本2个特征,共4个簇,簇中心在[-1,-1], [0,0],[1,1], [2,2],
簇方差分别为[0.4, 0.5, 0.2]
"""
X, y = make_blobs(n_samples=500, n_features=2, centers=[[2,3], [3,0], [1,1]], cluster_std=[0.4, 0.5, 0.2],
random_state =9)
"""
首先画出生成的样本数据的分布
"""
plt.scatter(X[:, 0], X[:, 1], marker='o')
plt.show()
"""
下面看不同的k值下的聚类效果
"""
score_all=[]
list1=range(2,6)
#其中i不能为0,也不能为1
for i in range(2,6):
y_pred = KMeans(n_clusters=i, random_state=9).fit_predict(X)
#画出结果的散点图
plt.scatter(X[:, 0], X[:, 1], c=y_pred)
plt.show()
score=metrics.calinski_harabaz_score(X, y_pred)
score_all.append(score)
print(score)
"""
画出不同k值对应的聚类效果
"""
plt.plt(list1,score_all)
plt.show()

原来的数据分布图为:

k=2时,聚类情况:

k=3时,聚类情况:

k=4时的聚类效果:

k=5时的聚类效果:

不同k值对应的聚类效果折线图:

我们可以看到,k=3时,哪个值最大,效果最好。

使用K-means进行聚类,用calinski_harabaz_score评价聚类效果的更多相关文章

  1. 聚类 高维聚类 聚类评估标准 EM模型聚类

    高维数据的聚类分析 高维聚类研究方向 高维数据聚类的难点在于: 1.适用于普通集合的聚类算法,在高维数据集合中效率极低 2.由于高维空间的稀疏性以及最近邻特性,高维的空间中基本不存在数据簇. 在高维聚 ...

  2. 【聚类算法】谱聚类(Spectral Clustering)

    目录: 1.问题描述 2.问题转化 3.划分准则 4.总结 1.问题描述 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图 ...

  3. SparkMLlib聚类学习之KMeans聚类

    SparkMLlib聚类学习之KMeans聚类 (一),KMeans聚类 k均值算法的计算过程非常直观: 1.从D中随机取k个元素,作为k个簇的各自的中心. 2.分别计算剩下的元素到k个簇中心的相异度 ...

  4. 100天搞定机器学习|day54 聚类系列:层次聚类原理及案例

    几张GIF理解K-均值聚类原理 k均值聚类数学推导与python实现 前文说了k均值聚类,他是基于中心的聚类方法,通过迭代将样本分到k个类中,使每个样本与其所属类的中心或均值最近. 今天我们看一下无监 ...

  5. <第一周> city中国城市聚类 testdata学生上网聚类 例子

    中国城市聚类 # -*- coding: utf-8 -*- kmeans算法 """ Created on Thu May 18 22:55:45 2017 @auth ...

  6. 软件——机器学习与Python,聚类,K——means

    K-means是一种聚类算法: 这里运用k-means进行31个城市的分类 城市的数据保存在city.txt文件中,内容如下: BJ,2959.19,730.79,749.41,513.34,467. ...

  7. KNN 与 K - Means 算法比较

    KNN K-Means 1.分类算法 聚类算法 2.监督学习 非监督学习 3.数据类型:喂给它的数据集是带label的数据,已经是完全正确的数据 喂给它的数据集是无label的数据,是杂乱无章的,经过 ...

  8. 【机器学习】聚类算法:层次聚类、K-means聚类

    聚类算法实践(一)--层次聚类.K-means聚类 摘要: 所谓聚类,就是将相似的事物聚集在一 起,而将不相似的事物划分到不同的类别的过程,是数据分析之中十分重要的一种手段.比如古典生物学之中,人们通 ...

  9. 使用K近邻算法改进约会网站的配对效果

    1 定义数据集导入函数 import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1 代表不喜欢,2 代表魅力一般,3 代表极具魅力 Par ...

随机推荐

  1. 我的代码-unsupervised learning

    # coding: utf-8 # In[1]: import pandas as pdimport numpy as npfrom sklearn import treefrom sklearn.s ...

  2. Centos下查看当前目录大小及文件个数

    查看目录及其包含的文件的大小 du -ch directory 查看当前目录下文件的个数 ls -l | grep "^-" | wc -l 查看当前目录下以.jpg为后缀文件的个 ...

  3. div介绍 盒子模型边框属性 CSS初始化 文字排版 边框调整 溢出

    今天学习的div,了解了div是干什么用的掌握了什么是盒子模型,以及div的外边距内边距以及边框,运用div和CSS给文字排版,利用边框的来做图像,div溢出的处理 CSS初始化: 精确排版的时候用这 ...

  4. InsertSort

    #include <bits/stdc++.h> using namespace std; #define MAXSIZE 200000 typedef int KeyType; type ...

  5. c#死锁示例代码

    void Main() { object obj1 = new object(); object obj2 = new object(); var t1 = new Thread(delegate(o ...

  6. 18.9 有关设置栈指针sp寄存器r13

    为什么在调用C程序时,要在汇编(.S)文件中设置栈指针sp(Stack Pointer) r13?设置栈指针的时候赋的值是多少,如何确定? .text .global _start _start: / ...

  7. win10自动更新后SQLServer无法启动的问题排查

    今天中午windows提示更新系统补丁并重启后发现,本地的SQL Server服务器没有正常启动,手工启动sqlserver也失败了,报错:找不到ERRORLOG文件及相应目录. 很是奇怪.强制创建该 ...

  8. python之format函数

    自python2.6开始,新增了一种格式化字符串的函数str.format(),可谓威力十足.那么,他跟之前的%型格式化字符串相比,有什么优越的存在呢?让我们来揭开它羞答答的面纱. 语法 它通过{}和 ...

  9. docker 快速部署ES集群 spark集群

    1) 拉下来 ES集群  spark集群 两套快速部署环境, 并只用docker跑起来,并保存到私库. 2)弄清楚怎么样打包 linux镜像(或者说制作). 3)试着改一下,让它们跑在集群里面. 4) ...

  10. postfix配置&使用

    myorigin = $mydomain #以“user@example.com”(而不是“user@hostname.example.com”)发送邮件, #这样就没有理由将邮件发送到“user@h ...