[TensorFlow]Tensor维度理解
http://wossoneri.github.io/2017/11/15/[Tensorflow]The-dimension-of-Tensor/
Tensor维度理解
Tensor在Tensorflow中是N维矩阵,所以涉及到Tensor的方法,也都是对矩阵的处理。由于是多维,在Tensorflow中Tensor的流动过程就涉及到升维降维,这篇就通过一些接口的使用,来体会Tensor的维度概念。以下是个人体会,有不准确的请指出。
tf.reduce_mean
reduce_mean(
input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None
)
计算Tensor各个维度元素的均值。这个方法根据输入参数axis的维度上减少输入input_tensor的维度。
举个例子:
x = tf.constant([[1., 1.], [2., 2.]])
tf.reduce_mean(x) # 1.5
tf.reduce_mean(x, 0) # [1.5, 1.5]
tf.reduce_mean(x, 1) # [1., 2.]
x是二维数组[[1.0,1.0],[2.0, 2.0]]
当axis参数取默认值时,计算整个数组的均值:(1.+1.+2.+2.)/4=1.5
当axis取0,意味着对列取均值:[1.5, 1.5]
当axis取1,意味着对行取均值:[1.0, 2.0]
再换一个3*3的矩阵:
sess = tf.Session()
x = tf.constant([[1., 2., 3.], [4., 5., 6.], [7., 8., 9.]])
print(sess.run(x))
print(sess.run(tf.reduce_mean(x)))
print(sess.run(tf.reduce_mean(x, 0)))
print(sess.run(tf.reduce_mean(x, 1)))
输出结果是
[[ 1. 2. 3.]
[ 4. 5. 6.]
[ 7. 8. 9.]]
5.0
[ 4. 5. 6.]
[ 2. 5. 8.]
如果我再加一维是怎么计算的?
sess = tf.Session()
x = tf.constant([[[1., 1.], [2., 2.]], [[3., 3.], [4., 4.]]])
print(sess.run(x))
print(sess.run(tf.reduce_mean(x)))
print(sess.run(tf.reduce_mean(x, 0)))
print(sess.run(tf.reduce_mean(x, 1)))
print(sess.run(tf.reduce_mean(x, 2)))
我给的输入Tensor是三维数组:
[[[ 1. 1.]
[ 2. 2.]]
[[ 3. 3.]
[ 4. 4.]]]
推测一下,前面二维的经过处理都变成一维的,也就是经历了一次降维,那么现在三维的或许应该变成二维。但现在多了一维,应该从哪个放向做计算呢?
看下结果:
2.5
[[ 2. 2.]
[ 3. 3.]]
[[ 1.5 1.5]
[ 3.5 3.5]]
[[ 1. 2.]
[ 3. 4.]]
发现,
当axis参数取默认值时,依然计算整个数组的均值:(float)(1+2+3+4+1+2+3+4)/8=2.5
当axis取0,计算方式是:
[[(1+3)/2, (1+3)/2],
[(2+4)/2, (2+4)/2]]
当axis取1,计算方式是:
[[(1+2)/2, (1+2)/2],
[(3+4)/2, (3+4)/2]]
当axis取2,计算方式是:
[[(1+1)/2, (2+2)/2],
[(3+3)/2, (4+4)/2]]
看到这里,能推断出怎么从四维降到三维吗?
有人总结了一下:
规律:
对于k维的,
tf.reduce_xyz(x, axis=k-1)的结果是对最里面一维所有元素进行求和。
tf.reduce_xyz(x, axis=k-2)是对倒数第二层里的向量对应的元素进行求和。
tf.reduce_xyz(x, axis=k-3)把倒数第三层的每个向量对应元素相加。
链接
拿上面的数组验证这个规律:
[[[ 1. 1.]
[ 2. 2.]]
[[ 3. 3.]
[ 4. 4.]]]
我们的k=3。小括号是一层,在一层内进行计算:
axis=3-1=2,做最内层计算,我们的最内层就是(1,1),(2,2),(3,3),(4,4),计算出来的就是
[[ 1. 2.]
[ 3. 4.]]
axis=3-2=1,做倒数第二层计算(参考二维计算):([1,1],[2,2])和([3, 3],[4, 4])
[[ 1.5 1.5]
[ 3.5 3.5]]
axis=3-3=1,做倒数第三层计算:([[1, 1], [2, 2]])([[3, 3], [4, 4]])
[[ 2. 2.]
[ 3. 3.]]
对于四维的,就贴段结果,自己可以尝试算一下,加深理解。
# input 4-D
[[[[ 1. 1.]
[ 2. 2.]]
[[ 3. 3.]
[ 4. 4.]]]
[[[ 5. 5.]
[ 6. 6.]]
[[ 7. 7.]
[ 8. 8.]]]]
# axis=none
4.5
# axis=0
[[[ 3. 3.]
[ 4. 4.]]
[[ 5. 5.]
[ 6. 6.]]]
# axis=1
[[[ 2. 2.]
[ 3. 3.]]
[[ 6. 6.]
[ 7. 7.]]]
在tensorflow 1.0版本中,
reduction_indices被改为了axis,在所有reduce_xxx系列操作中,都有reduction_indices这个参数,即沿某个方向,使用xxx方法,对input_tensor进行降维。
对于axis参数的作用,文档的解释是
the rank of the tensor is reduced by 1 for each entry in axis
即Tensor在axis的每一个分量上的秩减少1。如何理解矩阵的「秩」? - 马同学的回答 - 知乎
附一张reduction_indices的图

下面再看下第三个参数keep_dims,该参数缺省值是False,如果设置为True,那么减少的维度将被保留为长度为1。
回头看看最开始的例子:
# 2*2
[[ 1. 1.]
[ 2. 2.]]
# keep_dims=False
[ 1.5 1.5] # 1*2
[ 1. 2.] #1*2
# keep_dims=True
[[ 1.5 1.5]] #1*2
[[ 1.] #2*1
[ 2.]]
可以看到差别。关于这个参数,还没看到太多介绍,还需要了解。
[TensorFlow]Tensor维度理解的更多相关文章
- pytorch tensor 维度理解.md
torch.randn torch.randn(*sizes, out=None) → Tensor(张量) 返回一个张量,包含了从标准正态分布(均值为0,方差为 1)中抽取一组随机数,形状由可变参数 ...
- tensorflow中的函数获取Tensor维度的两种方法:
获取Tensor维度的两种方法: Tensor.get_shape() 返回TensorShape对象, 如果需要确定的数值而把TensorShape当作list使用,肯定是不行的. 需要调用Tens ...
- pytorch 中改变tensor维度的几种操作
具体示例如下,注意观察维度的变化 #coding=utf-8 import torch """改变tensor的形状的四种不同变化形式""" ...
- 对Tensorflow中tensor的理解
Tensor即张量,在tensorflow中所有的数据都通过张量流来传输,在看代码的时候,对张量的概念很不解,很容易和矩阵弄混,今天晚上查了点资料,并深入了解了一下,简单总结一下什么是张量的阶,以及张 ...
- tensor维度变换
维度变换是tensorflow中的重要模块之一,前面mnist实战模块我们使用了图片数据的压平操作,它就是维度变换的应用之一. 在详解维度变换的方法之前,这里先介绍一下View(视图)的概念.所谓Vi ...
- tensor 维度 问题。
tf.argmax takes two arguments: input and dimension. example: tf.argmx(arr, dimension = 1). or tf.arg ...
- 关于类型为numpy,TensorFlow.tensor,torch.tensor的shape变化以及相互转化
https://blog.csdn.net/zz2230633069/article/details/82669546 2018年09月12日 22:56:50 一只tobey 阅读数:727 1 ...
- 从维度理解dp问题
对于dp,我目前的理解就是,干成题目中的那件事需要作出若干次决策,然后你要取其中最优的结果,我们可以用深搜来递归地找最优解,然后我们来观察一下这个递归树的形状,如果它能从底往上直接递推的话,就不用递归 ...
- tensorflow tensor Flatten 张量扁平化,多通道转单通道数据
slim.flatten(inputs,outputs_collections=None,scope=None) (注:import tensorflow.contrib.slim as slim) ...
随机推荐
- 分布式事务之深入理解什么是2PC、3PC及TCC协议?
导读 在上一篇文章<[分布式事务]基于RocketMQ搭建生产级消息集群?>中给大家介绍了基于RocketMQ如何搭建生产级消息集群.因为本系列文章最终的目的是介绍基于RocketMQ的事 ...
- Python编程Day6——元组类型、字典类型、集合
一.元组类型(tuple) 1.用途:记录多个值,当多个值没有改变的需求此时元组更为合适 2.定义:在()内用逗号分隔开多个任意类型的值(参数为for可以循环的对象) 3.常用操作: 索引(正取向+反 ...
- sql server 性能调优之 当前用户请求分析 (1)
一. 概述 在生产数据库运行期间,有时我们需要查看当前用户会话状态或者是说数据库当前是否运行良好, 应用的场景比如:当运行的应用系统响应突然变慢时需要分析数据库的.或想分析当前的数据库是否繁忙,是否有 ...
- [WebKit内核] JavaScriptCore深度解析--基础篇(一)字节码生成及语法树的构建
看到HorkeyChen写的文章<[WebKit] JavaScriptCore解析--基础篇(三)从脚本代码到JIT编译的代码实现>,写的很好,深受启发.想补充一些Horkey没有写到的 ...
- fail2ban[防止linux服务器被暴力破解]
一 介绍fail2ban fail2ban 可以监视你的系统日志,然后匹配日志的错误信息(正则式匹配)执行相应的屏蔽动作(一般情况下是调用防火墙屏蔽),如:当有人在试探你的SSH. SMTP.FTP密 ...
- Django | 页面数据的缓存与使用
为什么要使用缓存? 一个动态网站的基本权衡点就是,它是动态的. 每次用户请求页面,服务器会重新计算.从开销处理的角度来看,这比你读取一个现成的标准文件的代价要昂贵的多 使用缓存,将多用户访问时基本相同 ...
- js 日期格式 转换 yyyy-MM-dd
之前js获取到数据库的Date,总是显示成: 后来知道是js 的Date 格式不能直接转换常用的yyyy-MM-dd 的格式 Date.prototype.yyyymmdd = function () ...
- java中Char到底是什么格式的编码
文本处理中经常有这样的逻辑: String s = new String(bts, "UTF-8"); 看String源代码,里面是一个char[],将bts按照某种编码方式,变成 ...
- DocumentFragment对象
一般动态创建html元素都是创建好了直接appendChild()上去,但是如果要添加大量的元素还用这个方法的话就会导致大量的重绘以及回流,所以需要一个'缓存区'来保存创建的节点,然后再一次性添加到父 ...
- Java反射,注解,以及动态代理
Java反射,注解,以及动态代理 基础 最近在准备实习面试,被学长问到了Java反射,注解和动态代理的内容,发现有点自己有点懵,这几天查了很多资料,就来说下自己的理解吧[如有错误,望指正] Java ...