pytorch的backward
在学习的过程中遇见了一个问题,就是当使用backward()反向传播时传入参数的问题:
net.zero_grad() #所有参数的梯度清零
output.backward(Variable(t.ones(1, 10))) #反向传播
这里的backward()中为什么需要传入参数Variable(t.ones(1, 10))呢?没有传入就会报错:
RuntimeError: grad can be implicitly created only for scalar outputs
这个错误的意思就是梯度只能为标量(即一个数)输出隐式地创建
比如有一个例子是:
1)
#使用Tensor新建一个Variable
x = Variable(t.ones(2, 2),requires_grad = True)
x
返回:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
此时查看该值的grad和grad_fn是没有返回值的,因为没有进行任何操作
x.grad_fn
x.grad
进行求和操作,查看梯度
y = x.sum()
y
返回:
tensor(4., grad_fn=<SumBackward0>)
这时候可查看:
y.grad_fn
返回:
<SumBackward0 at 0x122782978>
可知y是变量Variable x进行sum操作求来的,但是这个时候y.grad是没有返回值的,因为没有使用y进行别的操作
这个时候的x.grad也是没有值的,虽然使用x进行了sum操作,但是还没有对y反向传播来计算梯度
y.backward()#反向传播,计算梯度
然后再查看:
#因为y = x.sum() = (x[0][0] + x[0][1] + x[1][0] + x[1][1])
#每个值的梯度都为1
x.grad
返回:
tensor([[1., 1.],
[1., 1.]])
在这里我们可以看见y能够求出x的梯度,这里的y是一个数,即标量
如果这里我们更改一下y的操作,将y设置为一个二维数组:
from __future__ import print_function
import torch as t
from torch.autograd import Variable
x = Variable(t.ones(, ),requires_grad = True)
y = x +
y.backward()
然后就会报上面的错误:
RuntimeError: grad can be implicitly created only for scalar outputs
总结:
因此当输出不是标量时,调用.backwardI()就会出错
解决办法:
显示声明输出的类型作为参数传入,且参数的大小必须要和输出值的大小相同
x.grad.data.zero_() #将之前的值清零
x.grad
返回:
tensor([[., .],
[., .]])
进行反向传播:
y.backward(y.data)
x.grad
也可以写成,因为Variable和Tensor有近乎一致的接口
y.backward(y)
x.grad
返回:
tensor([[., .],
[., .]])
但是这里返回值与预想的1不同,这个原因是得到的梯度会与参数的值相乘,所以最好传入值为1,如:
y.backward(Variable(t.ones(, )))
x.grad
这样就能够成功返回想要的值了:
tensor([[., .],
[., .]])
更加复杂的操作:
在上面的例子中,x和y都是(2,2)的数组形式,每个yi都只与对应的xi相关
1)如果每个yi都与多个xi相关时,梯度又是怎么计算的呢?
比如x = (x1 = 2, x2 = 4), y = (x12+2x2, 2x1+3x22)
(i,j)的值就是传入.backward()的参数的值
x = Variable(t.FloatTensor([[, ]]),requires_grad = True)
y = Variable(t.zeros(, ))
y[,] = x[,]** + * x[,]
y[,] = * x[,] + * x[,]**
y.backward(Variable(t.ones(, ))) #(i,j)= (,)
x.grad
返回:
tensor([[ ., .]])
2)如果x和y不是相同的数组形式,且每个yi都与多个xi相关时,梯度又是怎么计算的呢?
比如x = (x1 = 2, x2 = 4, x3=5), y = (x12+2x2+4x3, 2x1+3x22+x32)
x = Variable(t.FloatTensor([[, , ]]),requires_grad = True)
y = Variable(t.zeros(, ))
y[,] = x[,]** + * x[,] + * x[,]
y[,] = * x[,] + * x[,]** + x[,]**
y.backward(Variable(t.ones(, )))
x.grad
返回:
tensor([[ ., ., .]])
如果(i, j) = (2,2),结果是否为(12, 52, 28)呢?
x = Variable(t.FloatTensor([[, , ]]),requires_grad = True)
y = Variable(t.zeros(, ))
y[,] = x[,]** + * x[,] + * x[,]
y[,] = * x[,] + * x[,]** + x[,]**
y.backward(Variable(t.FloatTensor([[, ]])))
x.grad
返回:
tensor([[., ., .]])
3)如果你想要分别得到y1,y2对x1,x2,x3的求导值,方法是:
x = Variable(t.FloatTensor([[, , ]]),requires_grad = True)
y = Variable(t.zeros(, ))
y[,] = x[,]** + * x[,] + * x[,]
y[,] = * x[,] + * x[,]** + x[,]**
j = t.zeros(,)#用于存放求导的值
#(i,j)=(,)这样就会对应只求得y1对x1,x2和x3的求导
#retain_variables=True的作用是不在反向传播后释放内存,这样才能够再次反向传播
y.backward(Variable(t.FloatTensor([[, ]])),retain_variables=True)
j[:,] = x.grad.data
x.grad.data.zero_() #将之前的值清零
#(i,j)=(,)这样就会对应只求得y2对x1,x2和x3的求导
y.backward(Variable(t.FloatTensor([[, ]])))
j[:,] = x.grad.data
print(j)
报错:
TypeError: backward() got an unexpected keyword argument 'retain_variables'
原因是新版本使用的参数名为retain_graph,改了即可:
x = Variable(t.FloatTensor([[, , ]]),requires_grad = True)
y = Variable(t.zeros(, ))
y[,] = x[,]** + * x[,] + * x[,]
y[,] = * x[,] + * x[,]** + x[,]**
j = t.zeros(,)#用于存放求导的值
#(i,j)=(,)这样就会对应只求得y1对x1,x2和x3的求导
#retain_graph=True的作用是不在反向传播后释放内存,这样才能够再次反向传播
y.backward(Variable(t.FloatTensor([[, ]])),retain_graph=True)
j[:,] = x.grad.data
x.grad.data.zero_() #将之前的值清零
#(i,j)=(,)这样就会对应只求得y2对x1,x2和x3的求导
y.backward(Variable(t.FloatTensor([[, ]])))
j[:,] = x.grad.data
print(j)
返回:
tensor([[ ., .],
[ ., .],
[ ., .]])
pytorch的backward的更多相关文章
- Pytorch 之 backward
首先看这个自动求导的参数: grad_variables:形状与variable一致,对于y.backward(),grad_variables相当于链式法则dz/dx=dz/dy × dy/dx 中 ...
- ARTS-S pytorch中backward函数的gradient参数作用
导数偏导数的数学定义 参考资料1和2中对导数偏导数的定义都非常明确.导数和偏导数都是函数对自变量而言.从数学定义上讲,求导或者求偏导只有函数对自变量,其余任何情况都是错的.但是很多机器学习的资料和开源 ...
- Pytorch autograd,backward详解
平常都是无脑使用backward,每次看到别人的代码里使用诸如autograd.grad这种方法的时候就有点抵触,今天花了点时间了解了一下原理,写下笔记以供以后参考.以下笔记基于Pytorch1.0 ...
- pytorch autograd backward函数中 retain_graph参数的作用,简单例子分析,以及create_graph参数的作用
retain_graph参数的作用 官方定义: retain_graph (bool, optional) – If False, the graph used to compute the grad ...
- Pytorch中torch.autograd ---backward函数的使用方法详细解析,具体例子分析
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph ...
- 关于Pytorch中autograd和backward的一些笔记
参考自<Pytorch autograd,backward详解>: 1 Tensor Pytorch中所有的计算其实都可以回归到Tensor上,所以有必要重新认识一下Tensor. 如果我 ...
- 深度学习框架PyTorch一书的学习-第三章-Tensor和autograd-2-autograd
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方 ...
- 深度学习框架PyTorch一书的学习-第一/二章
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 pytorch的设计遵循tensor- ...
- TensorFlow2.0初体验
TF2.0默认为动态图,即eager模式.意味着TF能像Pytorch一样不用在session中才能输出中间参数值了,那么动态图和静态图毕竟是有区别的,tf2.0也会有写法上的变化.不过值得吐槽的是, ...
随机推荐
- C# 添加Windows服务,定时任务。
源码下载地址:http://files.cnblogs.com/files/lanyubaicl/20160830Windows%E6%9C%8D%E5%8A%A1.zip 步骤 一 . 创建服务项目 ...
- phpcms有二级导航并且高亮效果代码
<div class="collapse navbar-collapse" id="example-navbar-collapse"> <ul ...
- POJ1201 Intervals(差分约束)
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 28416 Accepted: 10966 Description You ...
- 中国最强AI超级服务器问世,每秒提供AI计算2000万亿次
https://mp.weixin.qq.com/s/1EVczHp11OJ4GEjeE3z5cA 业内唯一以“AI计算”为核心的人工智能大会昨天发布了一份重要报告. 9月12日,<中国AI计算 ...
- django rest framework 与 Vue 整合遇到的坑
前提是已经有了Django项目与前端Vue打包好的dist文件 好,开始整合!!! 当然还是先设置Django的setting.py 1设置模板路径 2 设置静态文件路径 TEMPLATES = [ ...
- matlab练习程序(局部加权线性回归)
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局 ...
- Windows 10 运行原生Bash【Ubuntu】
当前widnows用户的 AppData\Local\lxss 目录下安装了ubuntu,其中rootfs是和ubuntu安装的目录一致 bash进入的就是LINUX的SHELL,因此其二进制格式是E ...
- 第1章 HTTP协议基本介绍了解
一.常见接口协议: HTTP 超文本传输协议 HTTPS 安全超文本传输协议 FTP 文件传输协议 TCP 网络控制协议 IP 互联网协议 UDP ...
- CsQuery获取IDomObject元素的完整CSS选择器
一.方法说明 通过IDomObject元素,获取完整的CSS选择器,过滤HTML和BODY元素,自动将class.id添加到选择器上,优先添加class,无class再添加id.如: <html ...
- UE4照片级渲染Demo