Codechef CNTL Counting is life 生成函数
第一问很氵,如果\(K,N\)同奇偶就是\(2^K-1\),否则就是\(2^K-2\)
第二问似乎是可重排列,考虑指数型生成函数。
如何限制某些数必须要出现奇数/偶数次?考虑\(\frac{e^x-e^{-x}}{2}\),可以发现它的展开式中只有次数为奇数的项有值,而\(\frac{e^x+e^{-x}}{2}\)只有次数为偶数的项有值。
于是当\(K,N\)同奇偶时答案是\(N!(\frac{e^x-e^{-x}}{2})^K\),否则是\(N!(\frac{e^x-e^{-x}}{2})^{K-1}\frac{e^x+e^{-x}}{2}\)
暴力二项式定理拆开\((\frac{e^x - e^{-x}}{2})^K\)就可以算了。
#include<iostream>
#include<cstdio>
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
}
const int MOD = 1e9 + 7;
inline int poww(long long a , int b){
int times = 1;
a = (a + MOD) % MOD;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
}
const int MAXN = 1e5 + 7;
int T , N , K , jc[MAXN] , inv[MAXN];
void init(){
jc[0] = 1;
for(int i = 1 ; i <= 1e5 ; ++i)
jc[i] = 1ll * jc[i - 1] * i % MOD;
inv[100000] = poww(jc[100000] , MOD - 2);
for(int i = 1e5 - 1 ; i >= 0 ; --i)
inv[i] = inv[i + 1] * (1ll + i) % MOD;
}
int binom(int b , int a){
return b < a ? 0 : 1ll * jc[b] * inv[a] % MOD * inv[b - a] % MOD;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
init();
for(T = read() ; T ; --T){
N = read(); K = read();
if((N ^ K) & 1){
cout << poww(2 , K) - 2 << ' ';
int ans = 0;
for(int i = 0 ; i < K ; ++i)
ans = (ans + (i & 1 ? -1ll : 1ll) * binom(K - 1 , i) * (poww(K - 1 - 2 * i + 1 , N) + poww(K - 1 - 2 * i - 1 , N)) % MOD + MOD) % MOD;
cout << 1ll * ans * poww(poww(2 , K) , MOD - 2) % MOD << '\n';
}
else{
cout << poww(2 , K) - 1 << ' ';
int ans = 0;
for(int i = 0 ; i <= K ; ++i)
ans = (ans + (i & 1 ? -1ll : 1ll) * binom(K , i) * poww(K - 2 * i , N) % MOD + MOD) % MOD;
cout << 1ll * ans * poww(poww(2 , K) , MOD - 2) % MOD << '\n';
}
}
return 0;
}
Codechef CNTL Counting is life 生成函数的更多相关文章
- Codechef TAPAIR Counting the important pairs 随机化、树上差分
传送门 题意:给出一个$N$个点.$M$条边的无向连通图,求有多少组无序数对$(i,j)$满足:割掉第$i$条边与第$j$条边之后,图变为不连通.$N \leq 10^5 , M \leq 3 \ti ...
- scau 2015寒假训练
并不是很正规的.每个人自愿参与自愿退出,马哥找题(马哥超nice么么哒). 放假第一周与放假结束前一周 2015-01-26 http://acm.hust.edu.cn/vjudge/contest ...
- bzoj 3509: [CodeChef] COUNTARI] [分块 生成函数]
3509: [CodeChef] COUNTARI 题意:统计满足\(i<j<k, 2*a[j] = a[i] + a[k]\)的个数 \(2*a[j]\)不太好处理,暴力fft不如直接暴 ...
- CodeChef Counting on a directed graph
Counting on a directed graph Problem Code: GRAPHCNT All submissions for this problem are available. ...
- Counting The Important Pairs CodeChef - TAPAIR
https://vjudge.net/problem/CodeChef-TAPAIR 合法的删除方法: 第一种:桥边与其余任意边(1)桥*(桥-1)/2(两条桥边)(2)桥*(m-桥)(桥边+其他边) ...
- 2019.01.02 poj3046 Ant Counting(生成函数+dp)
传送门 生成函数基础题. 题意:给出nnn个数以及它们的数量,求从所有数中选出i∣i∈[L,R]i|i\in[L,R]i∣i∈[L,R]个数来可能组成的集合的数量. 直接构造生成函数然后乘起来f(x) ...
- bzoj 2023: [Usaco2005 Nov]Ant Counting 数蚂蚁【生成函数||dp】
用生成函数套路推一推,推完老想NTT--实际上把这个多项式乘法看成dp然后前缀和优化一下即可 #include<iostream> #include<cstdio> using ...
- 【xsy2479】counting 生成函数+多项式快速幂
题目大意:在字符集大小为$m$的情况下,有多少种构造长度为$n$的字符串$s$的方案,使得$C(s)=k$.其中$C(s)$表示字符串$s$中出现次数最多的字符的出现次数. 对$998244353$取 ...
- 【BZOJ】1630: [Usaco2007 Demo]Ant Counting(裸dp/dp/生成函数)
http://www.lydsy.com/JudgeOnline/problem.php?id=1630 题意,给你n种数,数量为m个,求所有的数组成的集合选长度l-r的个数 后两者待会写.. 裸dp ...
随机推荐
- 微信小程序中如何获取for循环的item相关值到JS页面的问题
今天小程序开发过程中,遇到了这个棘手的问题.由于我没有前端基础,只是知道一点儿基本的HTML标签,所以卡了好久,特此分享,望后来的你,可以有所收获. measure step 1 *.WXML: ...
- Spring MVC 静态资源处理 (三)
完整的项目案例: springmvc.zip 目录 实例 项目结构: 一.配置web.xml <?xml version="1.0" encoding="UTF-8 ...
- 洗礼灵魂,修炼python(91)-- 知识拾遗篇 —— pymysql模块之python操作mysql增删改查
首先你得学会基本的mysql操作语句:mysql学习 其次,python要想操作mysql,靠python的内置模块是不行的,而如果通过os模块调用cmd命令虽然原理上是可以的,但是还是不太方便,那么 ...
- MongoDB启动文件配置参数详解
接手的MongoDB只有一个日志文件,体积非常大,排错不便.在找解决办法的时候发现MongoDB的启动文件配置项超级多,于是产生了解释配置参数的想法. mongod服务有两种启动方式 一种是通过配置文 ...
- UGUI自定义组件之Image根据Text大小自动调整
需求分析 在之前的文章中,介绍到可以使用UGUI自带的ContentSizeFitter组件,进行Button根据Text的长度自适应, UGUI ContentSizeFitter之Button根据 ...
- fedora 28/29 配置 C++ 环境
最近 使用C++ 开发 更换机器的时候,还要重新配置一下 gnu 工具链.于是简单进行了安装了一下: yum install gcc yum install gcc-c++ yum install g ...
- PHP实现邮件的自动发送
最近做一个邮箱验证的功能,研究了一会,搞定了邮件的自动发送.下面用qq邮箱作为演示,一步一步来解释: 代码下载地址 首先,就是做到邮件的发送,代码如下: <?php//邮件发送require ' ...
- Java多线程 Socket使用
点我跳过黑哥的卑鄙广告行为,进入正文. Java多线程系列更新中~ 正式篇: Java多线程(一) 什么是线程 Java多线程(二)关于多线程的CPU密集型和IO密集型这件事 Java多线程(三)如何 ...
- MYSQL基本操作(下)
好了,废话不多说,接着开始Mysql剩下部分的小结了 Mysql 之 基础下 事务 事务:一系列将要发生或正在发生的连续操作,旨在保证数据操作的完整性.在事务开启之后,所有的操作都会被临时存储到事务日 ...
- P1140 相似基因 这个和之前有一个题目特别像 dp
题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了444种核苷酸,简记作A,C,G,TA,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. 在一个人类 ...