HDU 1159 Common Subsequence
题目大意:给定两个字符串,求他们的最长公共子序列的长度
解题思路:设字符串 a = "a0,a1,a2,a3...am-1"(长度为m), b = "b0, b1, b2, b3 ... bn-1"(长度为n),
它们的最长公共子序列为c = "c0, c1, c2, ... ck-1",长度为k,
dp[i][j]定义为子串 "a0,a1,...,ai-1" 和 子串"b0,b1,...,bj-1"的最长公共子序列,那么dp[m][n]即为所求结果。
dp[i][j]即a的前i个字母和b的前j个字母的最长公共子序列
接下来说明dp数组的更新过程,
首先 dp[i][0] 和 dp[0][j]全部初始化为0: 其中有一个子串是空串,最长公共子序列自然为0
若a,b的最后一个字母 am-1 == bn-1,则这个字母一定是c的最后一个字母(对公共子序列有贡献),即ck-1,
那么 子串 "a0, ... am-2" 与 子串 “b0, ... bn-2”的最长公共子序列为 "c0, ... ck-2"(长度为k-1,加上最后一个字母也就是ck-1长度就是k)
若 am-1 != bn-1, 有两种情况:
<1>若am-1 != ck-1(公共子序列的最后一个字母),那么字母am-1对公共子序列就是没有贡献的,
那么它们的最长公共子序列应该等于子串"a0,a1,a2, ..., am-2" 和 "b0,b1,b2, ..., bn-1"的最长公共子序列,即dp[m-1][n];
<2>若bn-1 != ck-1, 那么字母bn对公共子序列就是没有贡献的,
那么它们的最长公共子序列就应该等于子串"a0,a1,a2, ..., am-1" 和 子串 "b0, b1, b2, ... , bn-1"的最长公共子序列,即dp[m][n-1];
因此考虑以上两种情况,若am-1 != bn-1时,取上面两种情况的最长公共子序列中较大的一个即为am-1 != bn-1时的结果
即am-1 != bn-1时, 有 dp[m][n] = MAX(dp[m-1][n], dp[m][n-1]);
初始状态: dp[0][i] 和 dp[i][0] = 0;
状态转移方程:
Ai == Bj时, dp[i][j] = dp[i-1][j-1]+1;
Ai != Bj时, dp[i][j] = MAX(dp[i-1][j], dp[i][j-1]);
/* HDU 1159 Common Subsequence --- 入门dp */
#include <cstdio>
#include <cstring> int dp[][];
char s1[], s2[];
int len1, len2; inline int MAX(int a, int b){
return a > b ? a : b;
} /*
@function: 初始化工作
@param: void
@return: void
*/
void init()
{
len1 = strlen(s1);
len2 = strlen(s2);
for (int i = ; i < len1; ++i){
dp[][i] = ;
} for (int i = ; i < len2; ++i){
dp[i][] = ;
} } int main()
{
#ifdef _LOCAL
freopen("D:\\input.txt", "r", stdin);
#endif /*
定义状态dp[i][j]表示s1前i个字符和s2的前j个字符的最长公共子序列的长度
初始化: dp[i][0] 和 dp[0][j] 全初始化为0 (i <len1, j < len2)
状态转移方程:
s1[i] == s[j]时, dp[i][j] = dp[i-1][j-1]+1
s1[i] != s[j]时, dp[i][j] = MAX(dp[i-1][j], dp[i][j-1])
*/ while (scanf("%s%s", s1, s2) == ){
init(); for (int i = ; i <= len1; ++i){
for (int j = ; j <= len2; ++j){
//详细见状态转移方程
if (s1[i - ] == s2[j - ]){
dp[i][j] = dp[i - ][j - ] + ;
}
else{
dp[i][j] = MAX(dp[i - ][j], dp[i][j - ]);
}
}//for(j)
}//for(i)
printf("%d\n", dp[len1][len2]);
}
return ;
}
相关链接:
HDU 1159 Common Subsequence的更多相关文章
- HDU 1159 Common Subsequence 最长公共子序列
HDU 1159 Common Subsequence 最长公共子序列 题意 给你两个字符串,求出这两个字符串的最长公共子序列,这里的子序列不一定是连续的,只要满足前后关系就可以. 解题思路 这个当然 ...
- HDU 1159 Common Subsequence 公共子序列 DP 水题重温
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
- hdu 1159 Common Subsequence(最长公共子序列)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
- hdu 1159 Common Subsequence(最长公共子序列 DP)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
- HDU 1159 Common Subsequence(裸LCS)
传送门: http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
- HDU 1159 Common Subsequence【dp+最长公共子序列】
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu 1159 Common Subsequence 【LCS 基础入门】
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1159 http://acm.hust.edu.cn/vjudge/contest/view.action ...
- hdu 1159:Common Subsequence(动态规划)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- hdu 1159 Common Subsequence(LCS最长公共子序列)
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
随机推荐
- C++-前缀和后缀
1,c++规定后缀形式的++操作符有一个int行的参数,被调用时,编译器自动加一个0作为参数给他 2,前缀返回一个reference,后缀返回一个const对象 /////////////////// ...
- DB2事务日志已满的解决方法
DB2命令终端输入: db2 update db cfg for <dbname> using LOGPRIMARY 50 db2 update db cfg for <dbname ...
- checkbox的全选、反选、删除(MainActivity)
package com.example.ay; import java.util.ArrayList;import java.util.List; import com.example.adapter ...
- switch… case 语句的用法(一)
public class Test7 { public static void main(String[] args) { int i=5; switch(i) { case 1: System.ou ...
- 转:gartner 2014-07 ETL工具象限排名
ref: http://www.gartner.com/technology/reprints.do?id=1-1YAXV15&ct=140728&st=sb
- PIT,BL,AP,CP,CSC
使用ODIN刷机的时候,要选择ROM文件,以下是5件套各部分的说明: PIT:分区信息,如果没有更换ROM,一般不需要刷,也不需要勾选re-partition选项 BL:bootloader,引导信息 ...
- linux常用命令:4文件压缩和解压命令
文件压缩和解压命令 压缩命令:gzip.tar[-czf].zip.bzip2 解压缩命令:gunzip.tar[-xzf].unzip.bunzip2 1. 命令名称:gzip 命令英文原意:GNU ...
- windows 命令修改IP
修改ip: netsh -c interface ip set address name="本地连接" source=static addr=192.168.11.100 mask ...
- 完美解决方案,可排除DATASET不支持System.Nullable错误
完美解决方案,可排除DATASET不支持System.Nullable错误 using System; using System.Collections.Generic; using System.L ...
- 把input类型剔出来
<!doctype html public "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...