ZOJ 3596Digit Number(BFS+DP)
一道比较不错的BFS+DP题目
题意很简单,就是问一个刚好包含m(m<=10)个不同数字的n的最小倍数。
很明显如果直接枚举每一位是什么这样的话显然复杂度是没有上限的,所以需要找到一个状态表示方法:
令F[i][j] 表示已经用了 i (二进制压位表示)用了 i 这些数字,且余数j为的状态,枚举时直接枚举当前位,那么答案明显就是F[m][0]
我这里将状态i, j存在了一维空间里,即 i * 1000 + j表示,实际上用一个结构体存队列里的点,用二维数组标记状态也是可行的。
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, mid
#define rson k<<1|1, mid+1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++) template<class T> T CMP_MIN(T a, T b) { return a < b; }
template<class T> T CMP_MAX(T a, T b) { return a > b; }
template<class T> T MAX(T a, T b) { return a > b ? a : b; }
template<class T> T MIN(T a, T b) { return a < b ? a : b; }
template<class T> T GCD(T a, T b) { return b ? GCD(b, a%b) : a; }
template<class T> T LCM(T a, T b) { return a / GCD(a,b) * b; } //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-;
//LL MOD = 987654321; int t, n, m, x;
struct Node {
bool vis;
char num;
int pre, cnt;
}s[(<<) * ];
char ans[], d[]; int bfs()
{
queue<int>q;
q.push();
while(!q.empty()) {
int head = q.front();q.pop();
rep (i, , ) {
if(head == && i == ) continue;
int mod = (head % * + i) % n;
int tail = ((head / ) | ( << i)) * + mod;
if(s[tail].vis)
continue;
s[tail].vis = true;
s[tail].num = i + '';
s[tail].pre = head;
s[tail].cnt = s[head].cnt + ((head / ) & ( << i) ? : );
if(s[tail].cnt == m && mod == ) {
return tail;
}
if(s[tail].cnt <= m) q.push(tail);
}
}
return ;
} //calc a / b
char* divide(char *a, int len, int b) {
mem0(d);
int i = , cur = , l = ;
while(cur < b && i < len) {
cur = cur * + a[i++] - '';
}
d[l++] = cur / b + '';
while(i < len) {
cur = cur % b * + a[i++] - '';
d[l++] = cur / b + '';
}
return d;
} void print(int ed) {
int len = ;
mem0(ans);
while(ed) {
ans[len++] = s[ed].num;
ed = s[ed].pre;
}
reverse(ans, ans + len);
printf("%s=%d*%s\n", ans, n, divide(ans, len, n));
} int main()
{
//FIN;
while(cin >> t) while(t--) {
cin >> n >> m;
mem0(s);
if( !(x = bfs()) ) {
puts("Impossible");
}
else {
print(x);
}
}
return ;
}
ZOJ 3596Digit Number(BFS+DP)的更多相关文章
- HDU 3565 Bi-peak Number(数位DP)题解
题意:我们定义每一位先严格递增(第一位不为0)后严格递减的数为峰(比如1231),一个数由两个峰组成称为双峰,一个双峰的价值为每一位位数和,问L~R双峰最大价值 思路:数位DP.显然这个问题和pos有 ...
- 【2019.8.14 慈溪模拟赛 T1】我不是!我没有!别瞎说啊!(notme)(BFS+DP)
\(IDA^*\) 说实话,这道题我一开始没想出正解,于是写了一个\(IDA^*\)... 但神奇的是,这个\(IDA^*\)居然连字符串长度分别为\(2500,4000\)的数据都跑得飞快,不过数据 ...
- codeforces 295C Greg and Friends(BFS+DP)
One day Greg and his friends were walking in the forest. Overall there were n people walking, includ ...
- 【HDU 3709】 Balanced Number (数位DP)
Balanced Number Problem Description A balanced number is a non-negative integer that can be balanced ...
- HDU 5898:odd-even number(数位DP)
http://acm.hdu.edu.cn/showproblem.php?pid=5898 题意:给出一个区间[l, r],问其中数位中连续的奇数长度为偶数并且连续的偶数长度为奇数的个数.(1< ...
- [HDOJ3709]Balanced Number(数位dp)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3709 题意:求区间[L,R]内每一个数中是否存在一位,使得左边的各位数*距离=右边的各位数*距离(自己 ...
- ZOJ 3689 Digging(贪心+dp)
Digging Time Limit: 2 Seconds Memory Limit: 65536 KB When it comes to the Maya Civilization, we ...
- Codeforces Gym101201B:Buggy Robot(BFS + DP)
题目链接 题意 给出一个n*m的地图,还有一个操作序列,你原本是要按照序列执行操作的,但是你可以修改操作:删除某些操作或者增加某些操作,问从'R'到'E'最少需要多少次修改操作. 思路 和上次比赛做的 ...
- HDU3709 Balanced Number (数位dp)
Balanced Number Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Descript ...
随机推荐
- php实现一致性哈希算法
<?php//原理概念请看我的上一篇随笔(http://www.cnblogs.com/tujia/p/5416614.html)或直接百度 /** * 接口:hash(哈希插口).distri ...
- 【英语】Bingo口语笔记(76) - 不知如何应答的场景对话
- MySQL常用的操作整理
MySQL是一个十分轻便的dbms,轻便.灵活,更适用于中小型数据的存储与架构.MySQL被数以万计的网站采用,从5版本以后,陆续支持了游标.触发器.事务.存储过程等高级应用,这也给MySQL的易用性 ...
- hadoop完全分布式模式的安装和配置
本文是将三台电脑用路由器搭建本地局域网,系统为centos6.5,已经实验验证,搭建成功. 一.设置静态IP&修改主机名&关闭防火墙(all-root)(对三台电脑都需要进行操作) 0 ...
- JS面向对象组件 -- 继承的其他方式(类式继承、原型继承)
继承的其他形式: •类式继承:利用构造函数(类)继承的方式 •原型继承:借助原型来实现对象继承对象 类 : JS是没有类的概念的 , 把JS中的构造函数看做的类 要做属性和方法继承的时候,要分开继 ...
- is_file和file_exists效率比较
目前在弄文件缓存的时候用到了判定文件存在与否,is_file()还是file_exists()呢?is_file和file_exists两者效率比较起来,谁的运行速度更快呢?还是做个测试吧: 1 2 ...
- 写python时加入缩进设置
发现如果用vim写python的时候,还是设成8好像会报错,在现有的基础上,加入下面设置就好了set shiftwidth=4
- 堪称最好的A*算法
原文地址:http://theory.stanford.edu/~amitp/GameProgramming/ 相关链接:http://www-cs-students.stanford.edu/%7E ...
- 关于div居中
margin : 100px; margin-left: auto; margin-right: auto; 这样子设置css样式就可以实现一个div居中
- Visual Assist的破解与安装
转载[PYG成员作品] [2016-09-26更新]Visual Assist X10.9.2112-Cracked.By.PiaoYun/P.Y.G 近期的一个稳定版本的破解方式: VA原版, VA ...