D. Upgrading Array
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You have an array of positive integers a[1], a[2], ..., a[n] and a set of bad prime numbers b1, b2, ..., bm. The prime numbers that do not occur in the set b are considered good. The beauty of array a is the sum , where function f(s) is determined as follows:

  • f(1) = 0;
  • Let's assume that p is the minimum prime divisor of s. If p is a good prime, then , otherwise .

You are allowed to perform an arbitrary (probably zero) number of operations to improve array a. The operation of improvement is the following sequence of actions:

  • Choose some number r (1 ≤ r ≤ n) and calculate the value g = GCD(a[1], a[2], ..., a[r]).
  • Apply the assignments: , ..., .

What is the maximum beauty of the array you can get?

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 5000) showing how many numbers are in the array and how many bad prime numbers there are.

The second line contains n space-separated integers a[1], a[2], ..., a[n] (1 ≤ a[i] ≤ 109) — array a. The third line contains m space-separated integers b1, b2, ..., bm (2 ≤ b1 < b2 < ... < bm ≤ 109) — the set of bad prime numbers.

Output

Print a single integer — the answer to the problem.

Sample test(s)
input
5 2
4 20 34 10 10
2 5
output
-2
input
4 5
2 4 8 16
3 5 7 11 17
output
10

贪心,从右往左扫gcd,若遇到好的质因子少于坏的质因子则可以更新使答案增加
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <set> using namespace std; #define maxn 40005
#define INF (1 << 30) bool prime[maxn];
int ele[maxn],a[],g[],b[];
int len = ,n,m,ans = ; int gcd(int x,int y) {
return y ? gcd(y,x % y) : x;
} int cal(int x) {
int sum = ;
for(int i = ; i * i <= x; ++i) {
if(x % i == ) {
int v,pos;
pos = lower_bound(b + ,b + m + ,i) - b;
v = b[pos] == i ? - : ;
while(x % i == ) {
sum += v;
x /= i;
}
}
} if(x != ) {
int pos = lower_bound(b + ,b + m + ,x) - b;
sum += b[pos] == x ? - : ;
}
return sum;
} void solve() {
//printf("cal = %d\n",cal(4));
for(int i = ; i <= n; ++i) {
ans += cal(a[i]);
} g[] = a[];
for(int i = ; i <= n; ++i) {
g[i] = gcd(g[i - ],a[i]);
} int t = ;
for(int i = n; i >= ; --i) {
int v;
if((v = cal(g[i] / t)) < ) {
//printf("g = %d v = %d\n",g[i],v);
ans += (-v) * i;
t *= g[i] / t;
}
} printf("%d\n",ans);
}
int main() { //freopen("sw.in","r",stdin); scanf("%d%d",&n,&m);
for(int i = ; i <= n; ++i) scanf("%d",&a[i]);
for(int i = ; i <= m; ++i) {
scanf("%d",&b[i]);
}
b[m + ] = INF; solve();
return ;
}

cf div2 236 D的更多相关文章

  1. cf div2 234 D

    D. Dima and Bacteria time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  2. 离线dfs CF div2 707 D

    http://codeforces.com/contest/707/problem/D 先说一下离线和在线:在线的意思就是每一个询问单独处理复杂度O(多少多少),离线是指将所有的可能的询问先一次都处理 ...

  3. cf div2 239 D

    D. Long Path time limit per test 1 second memory limit per test 256 megabytes input standard input o ...

  4. cf div2 237 D

    D. Minesweeper 1D time limit per test 2 seconds memory limit per test 512 megabytes input standard i ...

  5. cf div2 238 D

    D. Toy Sum time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  6. cf div2 238 c

    C. Unusual Product time limit per test 1 second memory limit per test 256 megabytes input standard i ...

  7. cf div2 235 D

    D. Roman and Numbers time limit per test 4 seconds memory limit per test 512 megabytes input standar ...

  8. cf div2 234 E

    E. Inna and Binary Logic time limit per test 3 seconds memory limit per test 256 megabytes input sta ...

  9. CF div2 D BFS

    http://codeforces.com/contest/676/problem/D 题目大意: 勇者去迷宫杀恶龙.迷宫是有n*m的方格子组成的.迷宫上有各种记号,这些记号表达着能走的方向.当且仅当 ...

随机推荐

  1. JS中的函数,Array对象,for-in语句,with语句,自定义对象,Prototype

    一)函数 A)JS中的函数的定义格式: function add(a,b) { var sum = a+b; document.write("两个数的和是:" + sum); // ...

  2. hashCode()和toString()

    hashCode函数和toString函数也在Object类中,同样,所有的类都继承了这2个函数. hashCode函数用于生成哈希码,没有参数,返回值为整型 把u的值作为键存入map中,使用get方 ...

  3. hdu1007

    Have you ever played quoit in a playground? Quoit is a game in which flat rings are pitched at some ...

  4. Entity Framework SqlFunctions 教你如何在EF调用sqlserver方法的函数存根

    今天算是研究了一天的SqlFunctions,请教了几个群的牛人,居然发现大伙对这个都比较陌生, 有的甚至直指EF中是不能调用sqlserver里的方法的. 因为之前搞过linq to sql 里面的 ...

  5. generate the next AttestationNumber, 格式是ICD-EPRG-DEV-0000000001,ICD-EPRG-DEV-0000000002

    private static int GetNextAttestationNumber(string maxAttestationNumber) { //generate the next Attes ...

  6. 3. 戏说VHDL之入门游戏一:流水灯

    一.   流水灯 1.1流水灯原理 流水灯是每个学电子的入门“游戏” ,示意图如图1,其原理极其简单,但是可玩性却极强,可以就8个LED写出不同花样的程序.在1.2中我们列出两个不同思路的代码作为VH ...

  7. JAVA类与对象(八)-----重写

    重写:子类对父类的允许访问的方法的实现过程进行重新编写!返回值和形参都不能改变.即:外壳不变,核心重写! 好处:可以根据子类的需要,定义特定于自己的行为.也就是说子类能够根据需要实现父类的方法. cl ...

  8. cocos2dx 3.x中的渲染机制

    1.由2.x的渲染节点,变成添加渲染命令,可以避免重复渲染相同的节点,提高了渲染效率 2.单机游戏通常要求apk包在30M以内,没压缩1M会有1%的转换率(下载转换率),即收入会提高 3.2.x中首先 ...

  9. Teamwork-Week2真对必应词典和有道词典的软件分析和用户需求调查(桌面版)

    经调查,现在有道词典在该领域拥有很大程度的市场占有率,所以我们将有道词典与必应词典进行对比. 核心功能一:单词本 有道词典中的单词本都只能是由用户手动添加不会的单词,而必应词典中的单词 不仅可以被自己 ...

  10. 二、break,continue区别

    break:作用于switch,和循环语句,用于跳出,或者称为结束 break语句单独存在,下面不要定义其他语句,因为执行不到,编译会失败,当循环套时,break会跳出当前所在循环,要跳出外部循环,只 ...