首先要感谢http://blog.csdn.net/v_july_v/article/details/7041827以及http://blog.chinaunix.net/uid-27164517-id-3280128.html两篇博文的作者,参考这两篇博文才对KMP算法有了初步认识,本文的一些内容也是来自于这两篇之中。KMP算法与BF算法的优略、回溯不回溯这些问题本文不作说明,而主要说明next函数(通常保存为一个next数组)的意义。这正是KMP算法难于理解的地方。

  为了方便起见,在不会起歧义的情况下做如下约定:下标都从0开始; 假设字符串为S,那么Si 表示第i个字符或者只有第i个字符的字符串;SiSi+1Si+2表示子串,如S1S2S3,S4S5等等;pre(S,i)表示字符串S的位置i之前的字符串,即S0S1...Si-1;next函数和next数组表示同一个意思。本文分为两节,第一节讲next函数的意义,得出需要满足的两个条件;第二节是具体代码以及相关说明。

第一节  next函数的意义

我们知道,KMP的基本匹配过程如下:在字符串T中查找模式P,需要记录T中的当前位置以及P中的当前位置 j。当Ti=Pj的时候i和j都自增;当Ti!=Pj时,令j=next(j),然后继续匹配。这样就跳过了一些字符,而这些字符,本质上来讲与字符串P0P1...Pj-1的前缀和后缀能匹配的最大长度相关。以图一作解释,来倒推next(j)的意义:

图 1

在T中查找P,P0P1P2P3P4=T1T2T3T4T5,但P5!=T6(i=6,j=5)。此时令j=next(j)。假设next[5]=2, 则跳过三个字符,新的j=2,从这个位置开始比较。能跳过的条件是什么?其一,从虚线部分可知必须保证P0P1=P3P4;其二,P5不能等于P2,因为之前我们知道了P5!=T6,如果P5=P2,那么P2肯定不等于T6。再次强调观察虚线部分,发现P0P1和P3P4正好是字符P5前面的字符串(即P0P1P2P3P4)的前缀和后缀。

    图1中,P5!=T6时跳过了三个字符,next[5]=2。再看图2:next(5)分别等于4,3,1,0的情况。

图 2

仔细观察图2中的四种情况,均需要符合上面所说的条件。对于图2的最后一幅图,此种情况的条件是P0P1P2P3P4没有相等的前缀和后缀,且P0!=P5。那么如果后一个条件不满足呢,那么显然P应该再移一个位置,对应的情况如图3:

图 3

图3中,next(5)=-1。因此next=-1的情况:Pj=P0,且P0P1...Pj-1没有任何相等的前缀和后缀。另外,一般地,如果P0就发生失配,那么显然i也要加一,因此next(0)=-1。

在此作一小结,k=next(j)需要满足的两个条件如下:

条件1. k是P0P1...Pj-1最长匹配的前缀和后缀的长度.

    条件2. Pj!=Pk.

第二节  next函数的求法

利用以上知识,我们就知道求next函数的思路了。基本思路是利用上面的第一个条件(寻找最长匹配的前后缀),而第二个条件(Pj!=Pnext(j))则作为优化。这样一步步理解会对算法思路更清晰一点。

基本思路: 利用条件1

使用归纳法:假设next(j)=k,则P0P1...Pk-1=Pj-k...Pj-2Pj-1,那么next(j+1)有两种情况:

1. 如果Pk=Pj,则P0P1...Pk=Pj-k...Pj-1Pj,所以next(j+1)=k+1=next(j)+1。

2. 如果Pk!=Pj,这是可以看做另外一个字符串匹配的问题,主串和模式串都是p,当匹配失败时,k=next(k)。

因此得到如下算法:

void get_nextval(char const* ptrn, int plen, int* nextval)
{
int i = 0;
nextval[i] = -1;
int j = -1;
while( i < plen-1 )
{
if( j == -1 || ptrn[i] == ptrn[j] ) //对应情况1
{
++i;
++j;
next(i)=j;
}
else //对应情况2
j = nextval[j];
}
}  

上述算法中,ptrn是模式串,plen是模式串长度,nextval数组保存所有位置的next值。该算法不考虑条件2,因此有可能发生Pi=Pnext(i)这种情况。在缺少该条件的情况下也可以用于做字符串匹配。假设next(i)=k,当匹配到i失效时,i=next(i)=k,这时候肯定也失效,因此又寻找k对应的next值,这样算法得以进行。

优化:利用条件2

比较常见的算法对情况1做了优化,如下:

 void get_nextval(char const* ptrn, int plen, int* nextval)
{
int i = ;
nextval[i] = -;
int j = -;
while( i < plen- )
{
if( j == - || ptrn[i] == ptrn[j] ) //对应情况1
{
++i;
++j;
if( ptrn[i] != ptrn[j] )
nextval[i] = j;
else
nextval[i] = nextval[j];
}
else //对应情况2
j = nextval[j];
}
}

  该版本的算法考虑了条件2,因此进入情况1的时候,next(i)!=j。我们可以考虑一条查询链,如图4:

    图4

假设现在刚刚运行完13行,得出next[i]=j。此时必然有ptrn[i]!=ptrn[j]。因此下个循环的时候会跳转到18行。该next链一直往前搜寻,直到某个位置k,ptrn[k]与ptrn[i]相等。该k就是最新的j值,这样回到情况1,接着按照条件1优化。另外,当j==-1也应当进入情况1,因为不能往前搜寻了。

以上就是next数组的求解过程,往后就可以利用next数组进行字符串查找了。在写查找算法的过程中,可以发现与求next数组的算法过程惊人的一致。这也是KMP算法的一个特点,把两者结合起来,更能够理解它的奥妙所在。

KMP算法中next函数的理解的更多相关文章

  1. KMP算法中next数组的理解与算法的实现(java语言)

    KMP 算法我们有写好的函数帮我们计算 Next 数组的值和 Nextval 数组的值,但是如果是考试,那就只能自己来手算这两个数组了,这里分享一下我的计算方法吧. 计算前缀 Next[i] 的值: ...

  2. KMP算法中我对获取next数组的理解

    之前在学KMP算法时一直理解不了获取next数组的函数是如何实现的,现在大概知道怎么一回事了,记录一下我对获取next数组的理解. KMP算法实现的原理就不再赘述了,先上KMP代码: 1 void g ...

  3. KMP算法的next函数求解和分析过程

    转自 wang0606120221:http://blog.csdn.net/wang0606120221/article/details/7402688 假设KMP算法中的模式串为P,主串为S,那么 ...

  4. 问题 1690: 算法4-7:KMP算法中的模式串移动数组

    题目链接:https://www.dotcpp.com/oj/problem1690.html 题目描述 字符串的子串定位称为模式匹配,模式匹配可以有多种方法.简单的算法可以使用两重嵌套循环,时间复杂 ...

  5. KMP 算法中的 next 数组

    KMP 算法中对 next 数组的理解 next 数组的意义 此处 next[j] = k:则有 k 前面的浅蓝色区域和 j 前面的浅蓝色区域相同: next[j] 表示当位置 j 的字符串与主串不匹 ...

  6. 关于KMP算法中,获取next数组算法的理解

    参考:KMP入门级别算法详解--终于解决了(next数组详解) https://blog.csdn.net/lee18254290736/article/details/77278769 在这里讨论的 ...

  7. KMP算法中求next数组的实质

    在串匹配模式中,KMP算法较蛮力法是高效的算法,我觉得其中最重要的一点就是求next数组: 看了很多资料才弄明白求next数组是怎么求的,我发现我的忘性真的比记性大很多,每次看到KMP算法求next数 ...

  8. KMP算法中的几个疑问

    KMP算法next数组求解实现 首先我们通过应用场景将KMP算法中用到的名词做一个说明: 在一个字符串(string1)中查询是否存在另一个字符串(string2). 在字符串匹配算法中,我们通常将字 ...

  9. poj 2406:Power Strings(KMP算法,next[]数组的理解)

    Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 30069   Accepted: 12553 D ...

随机推荐

  1. hibernate配置文件中的catalog属性

    在hibernate表的映射文件中 <hibernate-mapping>    <class name="com.sooyie.hibernate.orm.Link&qu ...

  2. 【服务器环境搭建-Centos】jdk的安装

    1.查看是否已安装openjdk 使用rpm命令查看是否已安装openjdk[root@linuxidc ~]# rpm -qa | grep java tzdata-java-2012c-.el6. ...

  3. C#_微信支付V3

    基础问题先排除: 确保 商户功能 审核通过,会有官方邮件 支付授权目录(注意看文档,大小写关系很大 点击支付按钮,提示“access_denied” 网上有很多关于此问题的解决) 点击支付按钮,提示“ ...

  4. 启动一个新的activity并携带数据,返回数据给上一个activity

    一.在启动一个新的activity的时候可以通过Intent携带数据,通过Intent.putExtra()方法通过键值对的形势装入数据.在新启动的activity中通过           getI ...

  5. s3c2440 J-flash 烧写 NOR flash

    视屏教程里是在NOR Flash 烧写了一个supervivi然后通过superViVi配合DNW下载Uboot程序到landflash第零块,由于我电脑室64位win7,官方提供的USB下载驱动不能 ...

  6. 工作常用的linux/mysql/php/工具命令

    工作常用的linux/mysql/php/工具命令: 1. tar备份目录 tar zcvf ****.tar.gz ****/ tar 备份跳过目录 tar --exclude=test1 3. s ...

  7. 矩阵奇异值分解(SVD)及其应用

    机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用(好文) [简化数据]奇异值分解(SVD) <数学之美> 第15章 矩阵运算和文本处理中的两个分类问题

  8. 基于websocket的jsp与java进行交互

    环境:jdk.18   tomcat-7.0.70 把tomcat中的 两个jir包复制到 注意:最后部署的时候要删除掉这两个jar包 tomcate中已经有了 ebSocket对象的创建和服务器连接 ...

  9. JavaScript及C# URI编码详解

    转载自:http://www.cnblogs.com/artwl/archive/2012/03/07/2382848.html 应用Uri编码,可以把一个或多个Uri作为另一个Uri的参数(如果不用 ...

  10. 获取本机 Android 默认sha1 秘钥

    获取本机 Android 默认sha1 秘钥: 以Windows操作系统为例,打开CMD,运行以下指令将得到所有默认秘钥. keytool -list -v -keystore C:\Users\pa ...