luoguP6623 [省选联考 2020 A 卷] 树(trie树)

Luogu

题外话:

。。。想不出来啥好说的了。

我认识的人基本都切这道题了。

就我只会10分暴力。

我是傻逼。

题解时间

先不想用什么维护,拆分成如下操作:

插入,合并,全局异或和,全局加一。

全局加一咋做?

Trie树变成从低位到高位记录就好。

全局加一就是直接反转,看到进位(这一位存在1方向节点变成0方向节点)就递归下去继续反转。

然后就没了。

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=530011;
struct sumireko{int to,ne;}e[N];int he[N],ecnt;
void addline(int f,int t){e[++ecnt].to=t;e[ecnt].ne=he[f],he[f]=ecnt;}
int n,v[N],fa[N];lint ans;
int rt[N],tcnt;
struct remilia{int d,s,v,son[2];}t[N<<5];
int merge(int x,int y)
{
if(!x||!y) return x|y;
t[x].s+=t[y].s,t[x].v^=t[y].v;
t[x].son[0]=merge(t[x].son[0],t[y].son[0]);
t[x].son[1]=merge(t[x].son[1],t[y].son[1]);
return x;
}
void fuckup(int x)
{
t[x].s=t[t[x].son[0]].s+t[t[x].son[1]].s;
t[x].v=t[t[x].son[0]].v^t[t[x].son[1]].v;
if(t[x].son[1]) t[x].v^=(t[t[x].son[1]].s&1)<<t[x].d;
}
void change(int x){swap(t[x].son[0],t[x].son[1]);if(t[x].son[0]) change(t[x].son[0]);fuckup(x);}
void insert(int x,int w)
{
if(t[x].d==26) return (void)(t[x].s++);
int &y=t[x].son[(w>>t[x].d)&1];
if(!y) y=++tcnt,t[y].d=t[x].d+1;insert(y,w);
fuckup(x);
}
void dfs(int x)
{
rt[x]=++tcnt;
for(int i=he[x],t=e[i].to;i;i=e[i].ne,t=e[i].to) dfs(t),rt[x]=merge(rt[x],rt[t]);
change(rt[x]),insert(rt[x],v[x]),ans+=t[rt[x]].v;
}
int main()
{
read(n);for(int i=1;i<=n;i++) read(v[i]);for(int i=2;i<=n;i++) read(fa[i]),addline(fa[i],i);
dfs(1);printf("%lld",ans);
return 0;
}
}
int main(){return RKK::main();}

luoguP6623 [省选联考 2020 A 卷] 树(trie树)的更多相关文章

  1. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  2. luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

    luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...

  3. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  4. 洛谷P6623——[省选联考 2020 A 卷] 树

    传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...

  5. P6628-[省选联考 2020 B 卷] 丁香之路【欧拉回路,最小生成树】

    正题 题目链接:https://www.luogu.com.cn/problem/P6628 题目大意 给出\(n\)个点的一张完全无向图,\(i\sim j\)的边权是\(|i-j|\). 然后给出 ...

  6. 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)

    题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...

  7. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  8. 题解 P6622 [省选联考 2020 A/B 卷] 信号传递

    洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...

  9. luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)

    luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...

随机推荐

  1. 利用shell为MobaXterm生成session模板

    文章目录 1.前言 2.导出MobaXterm的session模板 3.利用shell脚本生成.mxtsessions文件 4.导入到MobaXterm 5.效果图 1.前言 其实这是一件花里胡哨的事 ...

  2. 私有化轻量级持续集成部署方案--05-持续部署服务-Drone(上)

    提示:本系列笔记全部存在于 Github, 可以直接在 Github 查看全部笔记 持续部署概述 持续部署是能以自动化方式,频繁而且持续性的,将软件部署到生产环境.使软件产品能够快速迭代. 在之前部署 ...

  3. CPU、进程、线程原理

    巨人的肩膀 看完这篇还不懂高并发中的线程与线程池你来打我 (qq.com)

  4. python对文件夹内文件去重

    昨天无聊写了一个百度图片爬虫,测试了一下搜索"斗图".一下给我下了3000多个图片,关键是有一半以上重复的.what a fuck program ! 好吧,今天写一个文件去重功能 ...

  5. 认识 LLVM

    简介 LLVM是一套提供编译器基础设施的开源项目,是用 C++ 编写,包含一系列模块化的编译器组件和工具链,用来开发编译器前端和后端.它是为了任意一种编程语言而写成的程序,利用虚拟技术创造出编译时期. ...

  6. [GAME] [Civilization] 文明6字体及字体大小修改

    一.前言 文明作为一款文本信息量较大的游戏,提供的字体和UI界面设置还是偏少了一些,对干眼用户极不友好 二.用户界面整体缩放 首先是游戏自带的缩放选项:图象选项-图像-UI质量提升,设置为150%或更 ...

  7. json系列(二)cjson,rapidjson,yyjson大整数解析精度对比

    前言上一篇介绍了3种json解析工具的使用方法,对于基础数据的解析没有任何问题.我们传输的json数据里有unsigned long型数据,需要借助json解析工具得到正确的unsigned long ...

  8. C# Control.BeginInvoke、synchronizationcontext.post、delegate.BeginInvoke的运行原理

    背景 用到的知识点 1.windows消息机制 备注:鼠标点击.键盘等事件产生的消息要放入系统消息队列,然后再分配到应用程序线程消息队列.软件PostMessage的消息直接进入应用程序线程消息队列, ...

  9. C# typeof() 和object.GetType() 、Type..GetType()使用和区别

    进行学习到表达树了,用动Tpye了.所以整理了以下他们区别和用法 总得来说他们都是为了获取某个实例具体引用的数据类型System.Type.1.GetType()方法继承自Object,所以C#中任何 ...

  10. Weblogic补丁升级问题

    转至:https://blog.csdn.net/weixin_44659716/article/details/105132466 一.版本信息1)中间件版本 Weblogic10.3.6.02) ...