A. 三角形面积

#include <bits/stdc++.h>

using namespace std;

int main()
{
double a,b,c;
double ans,p,tmp;
cin>>a>>b>>c;
p=(a+b+c)*0.5;
tmp=p*(p-a)*(p-b)*(p-c);
ans=sqrt(tmp);
printf("%.1lf", ans);
return 0;
}

B. 最大质因子

唯一分解定理

唯一分解定理又称为算数基本定理,基本内容是:

每个大于1的自然数,要么本身就是质数,要么可以写为2个或以上的质数的积,而且这些质因子按大小排列之后,写法仅有一种方式。

用另一种方法表示就是:

对于任何一个大于1的正整数,都存在一个标准的分解式: N=p1^a1 * p2a2*···*pnan;(其中一系列an为指数,pn为质数)

此定理表明:任何一个大于 1 的正整数都可以表示为素数的积。

然而这道题纯暴力就可解...

#include <bits/stdc++.h>

using namespace std;

const int maxn=1e5+10;

bool judge(int a)
{
int flag=1;
for (int i=2;i*2<=a;i++)
if (a%i==0) {flag=0; break; }
if (a==1) return 0;
else return flag;
} int main()
{
int a;
while(cin>>a)
{
for (int i=a;i>=1;i--)
{
if (a%i==0)
if (judge(i)) {
cout<<i<<endl;
break;
}
}
} return 0; }

C.杨辉三角

模板例题

#include<bits/stdc++.h>

using namespace std;

int a[21][21];

int main()
{
memset(a, 0, sizeof(a));
a[1][1]=1;
a[2][1]=a[2][2]=1;
int n;
cin>>n;
for(int i=3;i<=n;i++)//行
{
for(int j=1;j<=i;j++)
{
if(j==1 || j==i)
{
a[i][j]=1;continue;
}
a[i][j]=a[i-1][j-1]+a[i-1][j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
cout<<a[i][j]<<" ";
}
cout<<endl;
}
return 0;
}

D."nefu"的数目

#include<iostream>
#include<cstdio>
#include<cstring> using namespace std; string s; int scount(int p)
{
int sum=0;
int len=s.length();
for(int i=p+1;i<len;i++)
{
if(s[i]=='e')
{
for(int j=i+1;j<len;j++)
{
if(s[j]=='f')
{
for(int k=j+1;k<len;k++)
{
if(s[k]=='u') sum++;
//cout<<sum<<endl;
}
}
}
}
}
return sum;
} int main()
{
int ans=0,flag=0;
cin>>s;
int len=s.length();
//cout<<len;
for(int i=0;i<len;i++)
{
if(s[i]=='n')
{
ans+=scount(i);
}
//cout<<ans<<endl;
}
cout<<ans<<endl;
return 0;
}

E. 最少修改次数(1)

#include <bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;

int main()
{
string s,t;
while(cin>>s)
{
cin>>t;
int ct=0;
int nums=s.size(),numt=t.size();
int min=1111;
for (int i=0;i<=nums-numt;i++)
{
int j=0;
ct=0;
for (int k=i;k<=i+numt-1;k++)
{
if (s[k]!=t[j]) ct++;
j++;
} if (ct<min) min=ct;
} cout<<min<<endl;
}
return 0;
}

F.字典序

#include <bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;

int main()
{
int n;
while(cin>>n)
{
string s1,s,max="0";
for (int i=1;i<=n;i++)
{
int m=i;
s.clear(); s1.clear();
while(m!=0)
{
s+=m%8+'0';
m/=8;
}
for (int j=s.size()-1;j>=0;j--)
{
s1+=s[j];
}
if (s1>max) max=s1;
}
cout<<max<<endl;
}
return 0;
}

G.最小差值

#include<bits/stdc++.h>

using namespace std;

const int maxn=2e5+10;
int a[maxn]; int main()
{
int n,tot=0;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
tot+=a[i];
}
long long sum=0,ans=999999;
for(int i=0;i<n;i++)
{
long long com;
sum+=a[i];
com=tot-sum;
ans=min(ans, abs(com-sum));
}
cout<<ans;
return 0;
}

H.染色方案(待补)

I.最大正方形

#include<iostream>

#include<algorithm>

using namespace std;

int main()
{
int a[1000+5];
int n;
cin>>n;
for(int i=1;i<=n;i++)
{
cin>>a[i];
}
sort(a+1, a+1+n);
int ans=0;
for(int i=n;i>=1;i--)
{
if(a[i]>=ans+1)
{
ans++;
}
else break;
}
cout<<ans;
return 0;
}

J.最大值

注意:此题用C++输入输出会超时

#include<iostream>
#include<cstdio> using namespace std; const int MAXN=2e5+10;
int a[MAXN];
int times=0; int main()
{
int n;
while(cin>>n)
{
int maxn=0,next=0;
for(int i=0;i<n;i++)
{
scanf("%d", &a[i]);
maxn=max(maxn, a[i]);
}
for(int i=0;i<n;i++)
{
if(a[i]==maxn)
{
times++;
continue;
}
next=max(next, a[i]);
}
for(int i=0;i<n;i++)
{
if(a[i]>=maxn && times<=1)
{
printf("%d\n", next);
}
else
{
printf("%d\n", maxn);
}
}
}
return 0;
}

K.循环排列(待补)

L.库特与围棋(待补)

ACM-NEFU15届校赛-大一组的更多相关文章

  1. 河南省acm第九届省赛--《表达式求值》--栈和后缀表达式的变形--手速题

    表达式求值 时间限制:1000 ms | 内存限制:65535 KB 难度:3   描述 假设表达式定义为:1. 一个十进制的正整数 X 是一个表达式.2. 如果 X 和 Y 是 表达式,则 X+Y, ...

  2. CSUST 第15届 校赛总结

    一直想记录一下自己的比赛,却感觉空间说说有点不适,思考了一番还是打算放到自己的博客园 这次比赛总体来说还是不错,签到还是稳的一批,基本前四小时都在rk1 开局切了几道签到题,然后开了一道思维gcd,正 ...

  3. 广工十四届校赛 count 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6470 题意:求,直接矩阵快速幂得f(n)即可 构造矩阵如下: n^3是肯定得变换的,用二项式展开来一点 ...

  4. Sdut 2165 Crack Mathmen(数论)(山东省ACM第二届省赛E 题)

    Crack Mathmen TimeLimit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Since mathmen take security ...

  5. ACM Sdut 2158 Hello World!(数学题,排序) (山东省ACM第一届省赛C题)

    题目描述 We know thatIvan gives Saya three problems to solve (Problem F), and this is the firstproblem. ...

  6. 之江学院第0届校赛 qwb去面试 (找规律)

    Description 某一天,qwb去WCfun面试,面试官问了他一个问题:把一个正整数n拆分成若干个正整数的和,请求出这些数乘积的最大值. qwb比较猥琐,借故上厕所偷偷上网求助,聪明的你能帮助他 ...

  7. 之江学院第0届校赛 qwb与支教 (容斥公式)

    description qwb同时也是是之江学院的志愿者,暑期要前往周边地区支教,为了提高小学生的数学水平.她把小学生排成一排,从左至右从1开始依次往上报数. 玩完一轮后,他发现这个游戏太简单了.于是 ...

  8. Sdut 2164 Binomial Coeffcients (组合数学) (山东省ACM第二届省赛 D 题)

    Binomial Coeffcients TimeLimit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 输入 输出 示例输入 1 1 10 2 9 ...

  9. Sdut 2151 Phone Numbers (山东省ACM第一届省赛题 A)

    题目描述 We know thatif a phone number A is another phone number B's prefix, B is not able to becalled. ...

  10. 福州大学第十届校赛 & fzu 2128最长子串

    思路: 对于每个子串,求出 母串中 所有该子串 的 开始和结束位置,保存在 mark数组中,求完所有子串后,对mark数组按 结束位置排序,然后 用后一个的结束位置 减去 前一个的 开始 位置 再 减 ...

随机推荐

  1. 西瓜书6.2 matlab的libsvm使用

    因为python的教程没有找到详细的所以就改用matlab了 使用的是matlab r2016a,libsvm3-24,具体的安装配置教程就直接参考谦恭大大的了: https://blog.csdn. ...

  2. C 语言 数制

    C 语言 数制 数制也称计数制,是指用一组固定的符号和统一的规则来表示数值的方法.计算机处理的信息必须转换成二进制形式数据后才能进行存储和传输.计算机中,经常使用的进制有二进制.八进制.十进制.十六进 ...

  3. Nexus系列---【使用docker搭建nexus3仓库】

    1.Docker搭建nexus3私服 如果机器配置比较低,建议指定初始内存大小,默认2G docker run -d \ --restart=always \ --name=nexus3 \ -p 6 ...

  4. C语言初级阶段5——函数1

    C语言初级阶段5--函数1 函数的基本概念 1.函数:理解为封装功能的容器. 主函数是函数的入口 2.函数定义的基本格式: 返回值类型:常用的基本数据类型,执行完以后,函数会得到一个什么类型的值,如果 ...

  5. midway 框架学习

    最近 和别人一块运维 开源 产品,后台需要用到 midway框架,所以进行学习. 首先就是midway的搭建, 首先 npm init midway ,初始化项目,选择 koa-v3 template ...

  6. PostgreSQL备份与恢复命令

    postgresql备份与恢复相关命令 --备份用户的数据库bct的所有内容pg_dump -U 用户名 -d 库名 -f xxxXXXxxx.sql--删除原有数据库dropdb -U 用户名 -f ...

  7. spring为什么默认单例模式

    单例bean的优势 由于不会每次都新创建新对象所以有一下几个性能上的优势. 1.减少了新生成实例的消耗 新生成实例消耗包括两方面,第一,spring会通过反射或者cglib来生成bean实例这都是耗性 ...

  8. Java的由来

    Java 发展史 1.1.起源 20 世纪 90 年代,单片式计算机系统诞生,单片式计算机系统不仅廉价,而且功能强大,使用它 可以大幅度提升消费性电子产品的智能化程度. SUN 公司为了抢占市场先机, ...

  9. Unity学习笔记——坐标转换(3)

    通过Transform.Translate移动物体         6个重载:         public void Translate(float x, float y, float z, [De ...

  10. dubbo相关面试题

    1.说说Dubbo的分层? 从大的范围来说,dubbo分为三层,business业务逻辑层由我们自己来提供接口和实现还有一些配置信息,RPC层就是真正的RPC调用的核心层,封装整个RPC的调用过程.负 ...