「科技」在线 O(1) 逆元
问题:固定模数 \(p\),多次回答某个数 \(a\) 的逆元。强制在线。
本文提供一个 \(O(p^{\frac{2}{3}})\) 预处理,\(O(1)\) 查询的做法。
首先定义一下 Farey 序列:记 \(F_{m}\) 表示所有分母不超过 \(m\) 的最简真分数构成的有序数列。例如 \(F_5 = \{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\}\)。可以认为 \(\frac{0}{1}, \frac{1}{1}\) 也是最简真分数。
Farey 序列有一个性质:对于 \(F_m\) 中任意相邻两个分数 \(\frac{x}{y}, \frac{z}{w}\),一定满足 \(yz - xw = 1\)。
事实上,\(F_m\) 可以由 \(F_{m - 1}\) 扩展得到。对于 \(F_{m - 1}\) 中任意相邻两个分数 \(\frac{x}{y}\) 和 \(\frac{z}{w}\),如果 \(y + w = m\),就在这两个分数中间插一个 \(\frac{x + z}{y + w}\),这样就得到了 \(F_m\)。验算一下就能发现上述性质可以归纳证明。
我们只要运用下面的定理,就能解决原问题:
定理:对于任意整数 \(n \ge 2\) 和任意实数 \(v \in [0, 1]\),总是能在 \(F_{n - 1}\) 中找到 \(\frac{x}{y}\),满足 \(|v - \frac{x}{y}| \le \frac{1}{yn}\)。更强地,这个 \(\frac{x}{y}\) 一定是 \(v\) 向前或向后找到的第一个分数。
考虑固定 \(n\),令 \(v = \frac{a}{p}\)。那么就有 \(|\frac{a}{p} - \frac{x}{y}| \le \frac{1}{yn}\)。
两边同乘 \(py\),得到 \(|ay - px| \le \lfloor \frac{p}{n} \rfloor\)。
这意味着 \(ay \equiv u \pmod p\),其中 \(|u| \le \lfloor \frac{p}{n} \rfloor\)。因为 \(a^{-1} = u^{-1}y\),所以只要预处理出所有不超过 \(\lfloor \frac{p}{n} \rfloor\) 的数的逆元即可。
这样还有两个问题:怎么不用排序生成 Farey 序列;怎么 \(O(1)\) 找到 \(\frac{x}{y}\)。
发现序列中所有 \(\lfloor \frac{xn^2}{y} \rfloor\) 互不相同。我们开一个长度为 \(n^2\) 的 01 序列,每一位表示是否存在 \(\lfloor \frac{xn^2}{y} \rfloor\) 等于该下标。这样就可以桶排序;并且查询等价于查一个位置前后的第一个 \(1\),这个只要算一下 01 序列的前缀和即可。
预处理的时间是 \(O(n^2 + \frac{p}{n})\)。令 \(n = p^{\frac{1}{3}}\),我们就得到了 \(O(p^{\frac{2}{3}})\) 预处理,\(O(1)\) 查询的算法。
「科技」在线 O(1) 逆元的更多相关文章
- 「 神器 」在线PDF文件管理工具和图片编辑神器
每天进步一丢丢,连接梦与想 在线PDF文件管理工具 完全免费的PDF文件在线管理工具,其功能包括:合并PDF文件.拆分PDF文件.压缩PDF文件.Office文件转换为PDF文件.PDF文件转换为JP ...
- 一个「学渣」从零开始的Web前端自学之路
从 13 年专科毕业开始,一路跌跌撞撞走了很多弯路,做过餐厅服务员,进过工厂干过流水线,做过客服,干过电话销售可以说经历相当的“丰富”. 最后的机缘巧合下,走上了前端开发之路,作为一个非计算机专业且低 ...
- 36氪首发 | 「myShape」完成千万级人民币 Pre-A轮融资,推出 AI 智能健身私教
无需任何可穿戴设备. 36氪获悉,myShape(原Shapejoy)已于近期完成千万级人民币的Pre-A轮融资,由天奇阿米巴领投,远洋集团.七熹资本以及老股东跟投.过去 myShape 曾获得元迅资 ...
- 《Offer一箩筐》一份高质量「简历」撰写指南,望打扰!!
「MoreThanJava」 宣扬的是 「学习,不止 CODE」. 如果觉得 「不错」 的朋友,欢迎 「关注 + 留言 + 分享」,文末有完整的获取链接,您的支持是我前进的最大的动力! Hi~ 这里是 ...
- 「2014-2-26」Unicode vs. UTF-8 etc.
目测是个老问题了.随便一搜,网上各种总结过.这里不辞啰嗦,尽量简洁的备忘一下. 几个链接,有道云笔记链接,都是知乎上几个问题的摘录:阮一峰的日志,1-5 还是值得参考,但是之后的部分则混淆了 Wind ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
- LOJ #2116 Luogu P3241「HNOI2015」开店
好久没写数据结构了 来补一发 果然写的时候思路极其混乱.... LOJ #2116 Luogu P3241 题意 $ Q$次询问,求树上点的颜色在$ [L,R]$中的所有点到询问点的距离 强制在线 询 ...
- 「FJOI2016」神秘数 解题报告
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...
- 「NOI2014」购票 解题报告
「NOI2014」购票 写完了后发现写的做法是假的...然后居然过了,然后就懒得管正解了. 发现需要维护凸包,动态加点,询问区间,强制在线 可以二进制分组搞,然后你发现在树上需要资瓷撤回,然后暴力撤回 ...
随机推荐
- iOS中JavaScript和OC交互 --by 胡 xu
在iOS开发中很多时候我们会和UIWebView打交道,目前国内的很多应用都采用了UIWebView的混合编程技术,最常见的是微信公众号的内容页面.前段时间在做微信公众平台相关的开发,发现很多应用场景 ...
- python基础语法_7运算符
http://www.runoob.com/python3/python3-basic-operators.html#ysf7 目录 Python语言支持以下8类型的运算符: 算术运算符(-,+,*, ...
- 20161206日更新CocoaPods版本
从网上下载的工程第三方库需要更新,但当我执行pod update时提示以下错误: [!] The `master` repo requires CocoaPods 1.0.0 - (currentl ...
- nodejs串行有关联
var async = require('async'); //串行无关联series//串行有关联waterfallasync.waterfall([ function(cb) { setTimeo ...
- Spring系列12: `@Value` `@Resource` `@PostConstruct` `@PreDestroy` 详解
本文内容 @Resource实现依赖注入 @Value详细使用 @PostConstruct @PreDestroy的使用 @Resource实现依赖注入 前面章节介绍了使用@Autowired注入依 ...
- 6U VPX i7 刀片计算机
一.产品概述 该产品是一款基于第三代Intel i7双核四线程(或四核八线程)的高性能6U VPX刀片式计算机.产品提供了可支持全网状交换的高速数据通道,其中P1,P2各支持4个PCIe x4 Gen ...
- java Excel 简单工具
我就简单的分享一下我常用的工具 这次由于个人问题工具注释全部乱码差点无法还原,也是为了防止数据丢失后期找不到再次保留方法把. 调用工具个别方法 <dependency> <group ...
- node(s) didn‘t match node selector.
k8s集群中,有pod出现了 Pending ,通过 kubectl describe pod 命令,发现了如下报错 0/4 nodes are available: 1 node(s) had ta ...
- Spring 控制反转和依赖注入
控制反转的类型 控制反转(IOC)旨在提供一种更简单的机制,来设置组件的依赖项,并在整个生命周期管理这些依赖项.通常,控制反转可以分成两种子类型:依赖注入(DI)和依赖查找(DL),这些子类型各自又可 ...
- 麦克风阵列波束形成之DSB原理与实现
语音识别有近场和远场之分,且很多场景下都会用到麦克风阵列(micphone array).所谓麦克风阵列是一组位于空间不同位置的麦克风按一定的形状规则布置形成的阵列,是对空间传播声音信号进行空间采样的 ...