基础知识

二叉树的多种遍历方式,每种遍历方式各有其特点

LeetCode 104.二叉树的最大深度

分析1.0

往下遍历深度++,往上回溯深度--

class Solution {
int deep = 0, max = 0;
public int maxDepth(TreeNode root) {
preOrder(root);
return max;
}
void preOrder(TreeNode p){
if(p == null){
return;
}
deep++;
max = Math.max(deep, max);
preOrder(p.left);
preOrder(p.right);
deep--;
}
}

分析2.0

这个思路值得背诵

class solution {
/**
* 递归法
*/
public int maxDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = maxDepth(root.left);
int rightDepth = maxDepth(root.right);
return Math.max(leftDepth, rightDepth) + 1;
}
}

LeetCode 111.二叉树的最小深度

分析1.0

同最大深度一样的考虑,每次求最小值,最小值只能在叶节点取得

class Solution {
int deep = 0, min = 100001;
public int minDepth(TreeNode root) {
if(root == null){
return 0;
}
preOrder(root);
return min;
}
void preOrder(TreeNode p){
if(p == null){
return;
}
deep++;
if(p.left == null && p.right == null){
min = Math.min(deep, min);
}
preOrder(p.left);
preOrder(p.right);
deep--;
}
}

求最小值结果变量要初始化为数据集的最大值,求最大值要初始化为数据集的最小值

分析2.0

class Solution {
/**
* 递归法,相比求MaxDepth要复杂点
* 因为最小深度是从根节点到最近**叶子节点**的最短路径上的节点数量
*/
public int minDepth(TreeNode root) {
if (root == null) {
return 0;
}
int leftDepth = minDepth(root.left);
int rightDepth = minDepth(root.right);
if (root.left == null) {
return rightDepth + 1;
}
if (root.right == null) {
return leftDepth + 1;
}
// 左右结点都不为null
return Math.min(leftDepth, rightDepth) + 1;
}
}

LeetCode 222.完全二叉树的节点个数

分析1.0

完全二叉树求节点个数,知道层数+最后一层节点数即可

目前只知道根节点,遍历一下O(n)得出结论,但是要好于O(n),考虑完全二叉树特点 ?

空节点都在最后一层的右边,从根节点一直访问右孩子,知道访问到叶子节点,这时可能访问到最后一层或倒数第二层

失误

分析2.0

class Solution {
/**
* 针对完全二叉树的解法
*
* 满二叉树的结点数为:2^depth - 1
*/
public int countNodes(TreeNode root) {
if (root == null) return 0;
TreeNode left = root.left;
TreeNode right = root.right;
int leftDepth = 0, rightDepth = 0; // 这里初始为0是有目的的,为了下面求指数方便
while (left != null) { // 求左子树深度
left = left.left;
leftDepth++;
}
while (right != null) { // 求右子树深度
right = right.right;
rightDepth++;
}
if (leftDepth == rightDepth) {
return (2 << leftDepth) - 1; // 注意(2<<1) 相当于2^2,所以leftDepth初始为0
}
return countNodes(root.left) + countNodes(root.right) + 1;
}
}

分析3.0

普通二叉树

class Solution {
// 通用递归解法
public int countNodes(TreeNode root) {
if(root == null) {
return 0;
}
return countNodes(root.left) + countNodes(root.right) + 1;
}
}

总结

  1. 使用前序求的就是深度,使用后序求的是高度
  2. 求最小值结果变量要初始化为数据集的最大值,求最大值要初始化为数据集的最小值
  3. 二叉树有一个很好的结构特点,某个操作可以平等地施加于所有节点,这样递归就特别方便,要求什么先求它的孩子
  4. 判断一颗完全二叉树是不是满二叉树向左右两边遍历

常用变量名增量更新

size、val、ans、cnt、cur、pre、next、left、right、index、gap、tar、res、src、len、start、end、flag、ch

代码随想录算法训练营day16 | leetcode ● 104.二叉树的最大深度 559.n叉树的最大深度 ● 111.二叉树的最小深度 ● 222.完全二叉树的节点个数的更多相关文章

  1. Java实现 LeetCode 222 完全二叉树的节点个数

    222. 完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集 ...

  2. Leetcode 222.完全二叉树的节点个数

    完全二叉树的节点个数 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最 ...

  3. LeetCode 222. 完全二叉树的节点个数(Count Complete Tree Nodes)

    题目描述 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位 ...

  4. LeetCode 222.完全二叉树的节点个数(C++)

    给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置.若最底 ...

  5. Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree)

    Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree) 深度优先搜索的解题详细介绍,点击 给定一个 N 叉树,找到其最大深度 ...

  6. Leetcode:559. N叉树的最大深度

    Leetcode:559. N叉树的最大深度 Leetcode:559. N叉树的最大深度 Talk is cheap . Show me the code . /* // Definition fo ...

  7. [LeetCode] Count Complete Tree Nodes 求完全二叉树的节点个数

    Given a complete binary tree, count the number of nodes. Definition of a complete binary tree from W ...

  8. [LeetCode] Maximum Depth of N-ary Tree N叉树的最大深度

    Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longe ...

  9. [LeetCode] 222. Count Complete Tree Nodes 求完全二叉树的节点个数

    Given a complete binary tree, count the number of nodes. Note: Definition of a complete binary tree ...

  10. Leetcode 222:完全二叉树的节点个数

    题目 给出一个完全二叉树,求出该树的节点个数. 说明: 完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置. ...

随机推荐

  1. mysql安装及访问配置

    安装教程参考:https://www.cnblogs.com/hjw-zq/p/8809227.html 下载地址:https://dev.mysql.com/downloads/mysql/ 例:h ...

  2. Qt的三套无边框窗体的方案:可按比例拖拽窗体大小的无边框窗口和几个常见的无边框实例

    一.可按比例拖拽窗体大小的无边框窗口 前几天接到一个需求,就是视频广播的窗体画面要可以拖拽,修改成了可以拖拽全屏的窗口之后,又有一个问题:视频画面也被拉伸了. 由于视频画面是有比例的,所以我们最好也能 ...

  3. Mac系统下word论文参考文献更新域

    写论文的时候可能会遇到后续要增加文献的情况 在参考文献增加后会发现文章中的交叉引用的序号并没有更新 下面分享两种情况的处理方法 一.更新全部域 首先确认自己的打印️项是选中的 2.  打开word偏好 ...

  4. Kubernetes监控手册-01体系概述

    Kubernetes 监控体系驳杂,涉及到的内容非常多,总是感觉摸不到头绪,网上虽然有很多资料,都略显凌乱,没有一个体系化的讲解,今天开始,我们准备撰写一系列文章,把 Kubernetes 监控说透, ...

  5. Octave/Matlab初步学习

    Octave/Matlab初步学习 1.基本运算 和其他语言一样,可以通过数学运算符号来实现数学公式的运算.逻辑运算也基本相同 要注意的是,≠这个符号,表达式为 1 ~= 2 而不是用!=来表达 ​ ...

  6. input限制只能输入汉字

    <el-form class="det_foot" :model="form" :rules="rules" ref="fo ...

  7. [python]《Python编程快速上手:让繁琐工作自动化》学习笔记3

    1. 组织文件笔记(第9章)(代码下载) 1.1 文件与文件路径 通过import shutil调用shutil模块操作目录,shutil模块能够在Python 程序中实现文件复制.移动.改名和删除: ...

  8. [编程基础] C++多线程入门3-小心地将参数传递给线程

    原始C++标准仅支持单线程编程.新的C++标准(称为c++11或c++0x)于2011年发布.在c++11中,引入了新的线程库.因此运行本文程序需要C++至少符合c++11标准. 文章目录 3 小心地 ...

  9. JS逆向之补环境过瑞数详解

    JS逆向之补环境过瑞数详解 "瑞数" 是逆向路上的一座大山,是许多JS逆向者绕不开的一堵围墙,也是跳槽简历上的一个亮点,我们必须得在下次跳槽前攻克它!! 好在现在网上有很多讲解瑞数 ...

  10. 解决angular11打包报错Type 'Event' is missing the following properties from type 'any[]': ...Type 'Event' is not assignable to type 'string'

    出现这种情况,需要检查一下以下事项 1.ts类型声明和html里写的是否一致 1.1举例如下,子组件代码需要注意事项,子组件调用父组件方法,点击传参给父组件,在父组件触发一些时间,当前this指向是父 ...