众所周知,ChatGPT可以帮助研发人员编写或者Debug程序代码,但是在执行过程中,ChatGPT会将程序代码的一些相关文字解释和代码段混合着返回,如此,研发人员还需要自己进行编辑和粘贴操作,效率上差强人意,本次我们试图将ChatGPT直接嵌入到代码业务中,让ChatGPT生成可以直接运行的代码。

ChatGPT的主观回答问题

首先,我们向ChatGPT提出一个简单的代码需求:

可以看到,就像上文所描述的那样,ChatGPT会将文字描述和代码片段混合着返回,其实对于真正的需求者来说,文字描述本身是不必要的,因为如果提问者不知道什么是布隆过滤器,也就不会提出布隆过滤器相关的代码需求。

再看ChatGPT返回的布隆过滤器代码:

import hashlib  

class BloomFilter:
def __init__(self, size, hash_count):
self.size = size
self.hash_count = hash_count
self.bit_array = [False] * size def add(self, string):
for seed in range(self.hash_count):
result = hashlib.sha256((string + str(seed)).encode()).hexdigest()
index = int(result, 16) % self.size
self.bit_array[index] = True def __contains__(self, string):
for seed in range(self.hash_count):
result = hashlib.sha256((string + str(seed)).encode()).hexdigest()
index = int(result, 16) % self.size
if not self.bit_array[index]:
return False
return True

大体上,没有毛病。但是主观性太强,什么是主观性?就是ChatGPT其实不是站在需求者的视角来编写代码,而是站在自己的角度上,它没有考虑业务的上下文关系,也就是类和方法命名、方法参数、以及参数类型或者返回值以及类型,这些东西是否符合需求者当前的代码业务。

当然,这并不是ChatGPT的错,主要是输入的问题描述不够明确和详细,但如果每次都需要将代码业务逻辑转化为文字告诉ChatGPT,又有些画蛇添足,狗尾续貂之感。

基于业务配置ChatGPT

那么怎样将ChatGPT融入业务代码?首先创建Openai接入函数:

import openai  

openai.api_key = "apikey"  

def generate_code(func, docstring):
init_prompt = "You are a Python expert who can implement the given function."
definition = f"def {func}"
prompt = f"Read this incomplete Python code:\n```python\n{definition}\n```"
prompt += "\n"
prompt += f"Complete the Python code that follows this instruction: '{docstring}'. Your response must start with code block '```python'." response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
temperature=0,
max_tokens=1024,
top_p=1,
messages=[
{
"role": "system",
"content": init_prompt,
},
{
"role": "user",
"content": prompt,
},
],
) codeblock = response.choices[0].message.content
code = next(filter(None, codeblock.split("```python"))).rsplit("```", 1)[0]
code = code.strip() return code

诀窍就是提前设置好引导词:

init_prompt = "You are a Python expert who can implement the given function."
definition = f"def {func}"
prompt = f"Read this incomplete Python code:\n```python\n{definition}\n```"
prompt += "\n"
prompt += f"Complete the Python code that follows this instruction: '{docstring}'. Your response must start with code block '```python'."

这里我们提前设置两个参数func和docstring,也就是函数名和功能描述,要求ChatGPT严格按照参数的输入来返回代码,现在运行函数:

if __name__ == '__main__':  

    print(generate_code("test","Sum two numbers"))

程序返回:

➜  chatgpt_write_code /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/chatgpt_write_code/chatgpt_write_code.p
y"
def test(a, b):
return a + b

如此一来,ChatGPT就不会返回废话,而是直接交给我们可以运行的代码。

装饰器调用ChatGPT

事实上,函数调用环节也可以省略,我们可以使用Python装饰器的闭包原理,直接将所定义函数的参数和描述传递给ChatGPT,随后再直接运行被装饰的函数,提高效率:

import inspect
from functools import wraps def chatgpt_code(func):
@wraps(func)
def wrapper(*args, **kwargs):
signature = f'{func.__name__}({", ".join(inspect.signature(func).parameters)}):'
docstring = func.__doc__.strip()
code = generate_code(signature, docstring)
print(f"generated code:\n```python\n{code}\n```")
exec(code)
return locals()[func.__name__](*args, **kwargs) return wrapper

将方法定义好之后,使用基于ChatGPT的装饰器:

if __name__ == '__main__':  

    @chatgpt_code
def sum_two(num1,num2):
"""
Sum two numbers.
""" print(sum_two(1,2))

程序返回:

➜  chatgpt_write_code /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/chatgpt_write_code/chatgpt_write_code.p
y"
sum_two(num1, num2):
generated code: def sum_two(num1, num2):
"""
Sum two numbers.
"""
return num1 + num2 3

直接将业务逻辑和运行结果全部返回。

那么现在,回到开篇的关于布隆过滤器的问题:

if __name__ == '__main__':  

    @chatgpt_code
def bloom(target:str,storage:list):
"""
Use a Bloom filter to check if the target is in storage , Just use this func , no more class
""" print(bloom("你好",["你好","Helloworld"]))

程序返回:

➜  chatgpt_write_code /opt/homebrew/bin/python3.10 "/Users/liuyue/wodfan/work/chatgpt_write_code/chatgpt_write_code.p
y"
generated code: def bloom(target, storage):
# Initialize the Bloom filter with all zeros
bloom_filter = [0] * len(storage) # Hash the target and set the corresponding bit in the Bloom filter to 1
for i in range(len(storage)):
if target in storage[i]:
bloom_filter[i] = 1 # Check if all the bits corresponding to the target are set to 1 in the Bloom filter
for i in range(len(storage)):
if target in storage[i] and bloom_filter[i] == 0:
return False return True True
➜ chatgpt_write_code

丝滑流畅,和业务衔接得天衣无缝,拉链般重合,不需要挑挑拣拣,也不必复制粘贴。

结语

毫无疑问,ChatGPT确然是神兵利器,吹毛可断,无坚不摧。但工具虽好,也需要看在谁的手里,所谓工具无高下,功力有高深,类比的话,如果倚天剑握在三岁孩童手中,不仅毫无增益,还可能伤其自身,但是握在峨眉掌门灭绝师太手里,那就可以横扫千军如卷席了,那才能体现大宗匠的手段。最后,奉上项目代码,与众乡亲同飨:github.com/zcxey2911/chatgptapi_write_code

顺应潮流,解放双手,让ChatGPT不废话直接帮忙编写可融入业务可运行的程序代码(Python3.10实现)的更多相关文章

  1. 写完批处理脚本,再写个Gradle脚本,解放双手

    前言 上一篇写个批处理来帮忙干活---遍历&字符串处理中,我们已经学习如何写批处理脚本来帮我们做一些简单的重复性工作,本篇继续来学习如何用 Gradle 写脚本,让它也来帮我们干活 Gradl ...

  2. .NET开源的背后:是无奈,还是顺应潮流?

    摘要:微软.NET的开源,让很多开发者欣喜若狂.同一时候也有很多人好奇其背后的故事,过去视开源为癌症的微软为什么会突然有这一举措,是出于无奈,还是顺应潮流,而这当中的种种也许能够用文中的六个观点来说明 ...

  3. 10行Python代码自动清理电脑内重复文件,解放双手!

    大家好,又到了Python办公自动化系列. 今天分享一个系统层面的自动化案例: 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做 ...

  4. 解放双手,markdown文章神器,Typora+PicGo+七牛云图床实现自动上传图片

    本文主要分享使用Typora作为Markdown编辑器,PicGo为上传图片工具,使用七牛云做存储来解放双手实现图片的自动化上传与管理.提高写作效率,提升逼格.用过 Markdown 的朋友一定会深深 ...

  5. 10个 解放双手的 IDEA 插件,这些代码都不用写(第二弹)

    本文案例收录在 https://github.com/chengxy-nds/Springboot-Notebook 大家好,我是小富~ 鸽了很久没发文,不写文章的日子真的好惬意,每天也不用愁着写点什 ...

  6. 把盏言欢,款款而谈,ChatGPT结合钉钉机器人(outgoing回调)打造人工智能群聊/单聊场景,基于Python3.10

    就像黑火药时代里突然诞生的核弹一样,OpenAI的ChatGPT语言模型的横空出世,是人工智能技术发展史上的一个重要里程碑.这是一款无与伦比.超凡绝伦的模型,能够进行自然语言推理和对话,并且具有出色的 ...

  7. 解放双手——相机与IMU外参的在线标定

    本文作者 沈玥伶,公众号:计算机视觉life,编辑部成员 一.相机与IMU的融合 在SLAM的众多传感器解决方案中,相机与IMU的融合被认为具有很大的潜力实现低成本且高精度的定位与建图.这是因为这两个 ...

  8. 解放双手——Android自动化测试

    解放程序猿宝贵的右手(或者是左手) http://blog.csdn.net/eclipsexys/article/details/45622813 --Android自动化测试技巧 Google大神 ...

  9. 解放双手——Android的自动化构建及发布

    在一个App从开发到测试的过程中,我有很长一段时间都是这样做的:打包,上传到tower,在tower上编写本次更新说明,通知测试.一般情况下,打包及上传的过程大概也就2分钟.除此之外,由于项目代码有作 ...

  10. 还在被数据分析报告折磨?Smartbi让你解放双手

    数据分析报告贯穿了企业经营的时时刻刻,方方面面. 数据分析报告最常用于汇报分享:团队需要分享.沟通,数据分析师需要洞察数据.分析结果分享给企业领导.团队同事.大众媒体及更多的利益相关方. 数据分析报告 ...

随机推荐

  1. flutter-android

    多端开发框架 含义:通过一套代码编译成在 H5/微信小程序/React Native/百度小程序/支付宝小程序等端运行的代码. 技术简介:Taro,uniapp Taro是一个开放式跨端跨框架解决方案 ...

  2. SQL 用 in 大于 1000 问题解决

    -- 今天生成环境数据突然多,系统异常 解决方案(必须用in 业务情况),也可以用其他函数解决 union all  或者 exists 等 1:截取list List<Integer>  ...

  3. Java的访问控制修饰符有哪些?各有什么访问权限?请对照第7页ppt的表格分别写程序验证。

    Java的访问控制修饰符有哪些? JAVA主要有两类修饰符: 访问控制修饰符 : default, public , protected, private 非访问控制修饰符 : final, abst ...

  4. 【电脑】电脑windows10添加开机启动项

    1.添加开机启动项,首先按组合键"win+R"唤出运行窗口,输入"shell:startup"点击确认,打开启动项文件夹. 2.将需要设置为开机启动的软件快捷方 ...

  5. 【APT】海莲花组织DLL样本分析

    前言 样本来源Twitter,之前的文章已经完整分析过一个类似的DLL样本,这次做个简单记录. 样本分析 样本信息如下: DLL文件共有40个导出函数: 导出函数内容基本一致,恶意代码都在DllMai ...

  6. md5加密中文windows和linux不一致

    测试环境springboot md5加密结果不一致 linux启动的时候 java -Dfile.encoding=utf-8 -jar xxx.jar   即可.主要是编码不一致导致.

  7. MyBatis-Plus数据源失效找不到

    记一次项目排查问题项目应用了MyBatis-Plus多数据源配置但是在执行定时任务时发现没达到想要的结果于是查询日志分析问题最终发现问题所在多数据源注解会合事务注解冲突导致失效@DS("&q ...

  8. Jmeter-接口测试(二)

    鉴权码获取: 1.通过接口获取 appid secret  (第三方用户唯一凭证, 第三方用户唯一凭证秘钥) 2.登录之后自动生成 username,password 一.jmeter 接口关联 1. ...

  9. Vuex----Actions

    Actions用于处理异步任务. 如果通过异步操作变更数据,必须通过 Action,而不能使用Mutation,但是在 Action中还是要通过触发Mutation的方式间接变更数据. 注意: 在Ac ...

  10. Spring校验:@Validated和@Valid区别

    结论: Spring validation验证框架对入参实体进行嵌套验证必须在相应属性(字段)加上@Valid而不是@Validated Spring Validation验证框架对参数的验证机制提供 ...