NC50965 Largest Rectangle in a Histogram

题目

题目描述

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles:



Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

输入描述

The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that \(1 \leq n \leq 100000\) . Then follow n integers \(h1\dots hn\), where \(0 \leq h_i \leq 1000000000\). These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

输出描述

For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

示例1

输入

7 2 1 4 5 1 3 3
4 1000 1000 1000 1000
0

输出

8
4000

说明

Huge input, scanf is recommended.

题解

思路

知识点:单调栈。

如果枚举区间,获取区间最小直方,显然是很复杂的。因为区间不同导致的最小值不同,虽然可以用单调队列动态获取某一区间的最小值,但问题在于端点的可能有 \(n^2\) 个,所以复杂度是 \(O(n^2)\) 是不可接受的。

但是换一种角度,我们枚举直方,一共就 \(n\) 个,枚举 \(n\) 次即可。那么固定一个直方,最大的可伸展长度取决于左右第一个小于它的位置,找到长度乘以直方高度就是矩形面积了。

对于一个直方,左边最邻近小于用单调递增栈从左到右维护,右边同理从右到左维护,注意找到的位置是小于的那个直方的位置,而不是可伸展最大的位置,因此左边的需要加一,右边的需要减一。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>

using namespace std;

int h[100007];
int l[100007], r[100007];
///最大矩形高度肯定是某个矩形高度
///对于一个矩形,水平扩展距离取决于第一个比他小的,两边都是
///于是对每个矩形,用单调递增栈获得他左侧/右侧第一个比它小的矩形位置,就能知道左侧/右侧扩展距离
int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (cin >> n, n) {
for (int i = 0;i < n;i++) cin >> h[i];
stack<int> s1;
for (int i = 0;i < n;i++) {
while (!s1.empty() && h[s1.top()] >= h[i]) s1.pop();
l[i] = s1.empty() ? 0 : s1.top() + 1;///左侧大于等于的第一个位置
s1.push(i);
}
stack<int> s2;
for (int i = n - 1;i >= 0;i--) {
while (!s2.empty() && h[s2.top()] >= h[i]) s2.pop();///一定是大于等于,于是栈就是严格递减栈,元素是最靠右的
r[i] = s2.empty() ? n - 1 : s2.top() - 1;///右侧大于等于的最后一个位置
s2.push(i);
}
long long ans = 0;
for (int i = 0;i < n;i++)
ans = max(ans, (r[i] - l[i] + 1LL) * h[i]);
cout << ans << '\n';
}
return 0;
}

NC50965 Largest Rectangle in a Histogram的更多相关文章

  1. poj 2559 Largest Rectangle in a Histogram - 单调栈

    Largest Rectangle in a Histogram Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19782 ...

  2. DP专题训练之HDU 1506 Largest Rectangle in a Histogram

    Description A histogram is a polygon composed of a sequence of rectangles aligned at a common base l ...

  3. Largest Rectangle in a Histogram(DP)

    Largest Rectangle in a Histogram Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K ...

  4. POJ 2559 Largest Rectangle in a Histogram(单调栈)

    传送门 Description A histogram is a polygon composed of a sequence of rectangles aligned at a common ba ...

  5. Largest Rectangle in a Histogram(HDU1506)

    Largest Rectangle in a Histogram HDU1506 一道DP题: 思路:http://blog.csdn.net/qiqijianglu/article/details/ ...

  6. POJ 2559 Largest Rectangle in a Histogram

    Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 18942   Accepted: 6083 Description A hi ...

  7. Largest Rectangle in a Histogram

    2107: Largest Rectangle in a Histogram Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 777  Solved: 22 ...

  8. HDU 1506 Largest Rectangle in a Histogram (dp左右处理边界的矩形问题)

    E - Largest Rectangle in a Histogram Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format: ...

  9. hdu---1506(Largest Rectangle in a Histogram/dp最大子矩阵)

    Largest Rectangle in a Histogram Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

随机推荐

  1. transform动画

    1. html 结构 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  2. Dom基础(二):Dom性能优化

    一.尽量将DOM查询做缓存 1 let pElements = document.getElementById('div1') //将dom缓存 2 3 for(let i=0:i<pEleme ...

  3. SQL注入绕过总结

    花括号绕过 select{x password}from{database.user} union select 1,{x 2},3 特征字符大小写绕过 UniOn SEleCt 1,2,3 MYSQ ...

  4. 聊聊如何在华为云IoT平台进行产品开发

    摘要:华为云物联网平台承载着南北向数据互通的功能职责. 本文分享自华为云社区<如何基于华为云IoT物联网平台进行产品开发>,作者: Super.雯 . 华为云物联网平台承载着南北向数据互通 ...

  5. [题解][YZOJ50113] 枇杷树

    简要题意 \(m\) 个操作,每次操作都会产生一个树的版本 \((\)从 \(0\) 开始\()\). 一次操作把 \(x_i\) 版本的树的点 \(u\) 和 \(y_i\) 版本的树的点 \(v\ ...

  6. position与float

    position:fixed/absolute和float的关系:元素设置position:absolute / fixed后,float属性是没有效果的.对于position: absolute元素 ...

  7. 实践GoF的23种设计模式:建造者模式

    摘要:针对这种对象成员较多,创建对象逻辑较为繁琐的场景,非常适合使用建造者模式来进行优化. 本文分享自华为云社区<[Go实现]实践GoF的23种设计模式:建造者模式>,作者: 元闰子. 简 ...

  8. Wireshark抓包分析TCP“三次握手,四次挥手”

    1.目的 客户端与服务器之间建立TCP/IP连接,我们知道是通过三次握手,四次挥手实现的,但是很多地方对这个知识的描述仅限于理论层面,这次我们通过网络抓包的方式来看一下实际的TCP/IP传输过程. 2 ...

  9. 0.1+0.2不等于0.3,微信小程序云开发如何解决JavaScript小数计算精度失准的问题

    先看图 这个是JavaScript语言自身存在的一个问题.说道这里不得不提一下网上流传的JavaScript搞笑图 我们在使用云开发来开发微信小程序的时候,会经常遇到JavaScript小数计算精度失 ...

  10. ReentrantLock可重入、可打断、Condition原理剖析

    本文紧接上文的AQS源码,如果对于ReentrantLock没有基础可以先阅读我的上一篇文章学习ReentrantLock的源码 ReentrantLock锁重入原理 重入加锁其实就是将AQS的sta ...