AI人工智能 机器学习 深度学习 学习路径及推荐书籍
要学习Pytorch,需要掌握以下基本知识:
- 编程语言:Pytorch使用Python作为主要编程语言,因此需要熟悉Python编程语言。
- 线性代数和微积分:Pytorch主要用于深度学习领域,深度学习是基于线性代数和微积分的,因此需要具备线性代数和微积分的基础知识。
- 机器学习基础知识:了解机器学习的基本概念和算法,如线性回归、逻辑回归、支持向量机、决策树等。
- 深度学习基础知识:了解深度学习的基本概念和算法,如前馈神经网络、循环神经网络、卷积神经网络等。
- 计算机视觉或自然语言处理等领域的基础知识:Pytorch可以应用于各种领域,比如计算机视觉和自然语言处理等,因此需要了解所涉及的领域的基本知识。
- Pytorch基础知识:了解Pytorch的基本概念和操作,如张量、自动求导、模型定义、优化器等。
- 实践经验:通过实践项目或者模型实现等方式加深对Pytorch的理解和应用能力。
简单的学习计划
学习机器学习需要一定的数学和编程基础,下面是一个简单的学习计划:
- 学习Python编程语言:Python是机器学习最常用的编程语言之一,需要熟练掌握Python的基本语法和常用的Python库,如NumPy、Pandas和Matplotlib等。
- 学习数学基础:机器学习涉及到很多数学知识,尤其是线性代数、微积分和概率论。可以选择上述推荐的书籍进行学习,也可以参考网上的免费教程和视频。
- 学习机器学习基础理论:了解机器学习的基本概念和流程,如监督学习、无监督学习、训练集和测试集等。可以参考经典的机器学习教材,如《机器学习》(周志华著)、《统计学习方法》(李航著)等。
- 学习机器学习算法:掌握机器学习中常用的算法,如线性回归、逻辑回归、决策树、支持向量机和神经网络等。可以参考经典的机器学习教材,如《机器学习实战》(Peter Harrington著)、《Python机器学习基础教程》(Sebastian Raschka著)等。
- 实践项目:参与实际的机器学习项目,通过实践巩固学习成果。可以参加开源项目或者自己设计实现一个小项目。
- 持续学习:机器学习是一个快速发展的领域,需要不断学习最新的理论和技术。可以参加线上或线下的机器学习课程,关注机器学习领域的最新进展。
线性代数、微积分
线性代数和微积分都是必不可少的数学基础知识
建议你先学线性代数,因为线性代数是深度学习的基础,很多深度学习模型都是建立在线性代数的基础上。线性代数的一些基本概念,如向量、矩阵、线性变换等,对于理解和实现深度学习模型非常重要
微积分也是非常重要的数学基础,它在深度学习中用于计算梯度和优化,但是如果你刚开始学习深度学习,建议你先掌握线性代数的基础知识,再逐步学习微积分
推荐的经典书籍(线性代数、微积分)
线性代数:
- 《线性代数及其应用》(Linear Algebra and Its Applications), Gilbert Strang 著
- 《线性代数导论》(Introduction to Linear Algebra), Gilbert Strang 著
- 《线性代数》(Linear Algebra), Serge Lang 著
微积分:
- 《微积分学教程》(Calculus), Michael Spivak 著
- 《微积分学:初等函数与极限》(Calculus: Early Transcendentals), James Stewart 著
- 《微积分学教程》(Calculus: A Complete Course), Robert A. Adams 和 Christopher Essex 著
以上书籍都是非常经典的教材,内容详实且易于理解。此外,网上也有很多免费的线性代数和微积分课程资源,如MIT OCW等,可以根据自己的需求和兴趣选择适合自己的资源。
深度学习
深度学习是机器学习的分支之一,需要具备机器学习和数学基础。以下是一个简单的学习计划及精典书籍:
- 学习Python编程语言:Python是机器学习最常用的编程语言之一,需要熟练掌握Python的基本语法和常用的Python库,如NumPy、Pandas和Matplotlib等。
- 学习机器学习基础理论:了解机器学习的基本概念和流程,如监督学习、无监督学习、训练集和测试集等。可以参考经典的机器学习教材,如《机器学习》(周志华著)、《统计学习方法》(李航著)等。
- 学习深度学习基础理论:了解深度学习的基本概念和流程,如人工神经网络、反向传播算法、卷积神经网络和循环神经网络等。可以参考经典的深度学习教材,如《深度学习》(Ian Goodfellow、Yoshua Bengio和Aaron Courville著)、《神经网络与深度学习》(Michael Nielsen著)等。
- 学习深度学习框架:掌握深度学习常用的框架,如PyTorch、TensorFlow等。可以参考官方文档、教程和实战项目进行学习。
- 实践项目:参与实际的深度学习项目,通过实践巩固学习成果。可以参加开源项目或者自己设计实现一个小项目。
- 持续学习:深度学习是一个快速发展的领域,需要不断学习最新的理论和技术。可以参加线上或线下的深度学习课程,关注深度学习领域的最新进展。
推荐的经典书籍:
- 《深度学习》(Deep Learning),Ian Goodfellow、Yoshua Bengio和Aaron Courville著
- 《神经网络与深度学习》(Neural Networks and Deep Learning),Michael Nielsen著
- 《Python深度学习》(Python Deep Learning),斋藤康毅著
- 《深度学习实战》(Deep Learning with Python),Francois Chollet著
- 《动手学深度学习》(Dive into Deep Learning),李沐、Aston Zhang等著
有很多深度学习的优秀老师开设了公开课,以下是一些比较受欢迎的老师及其公开课:
- 吴恩达 (Andrew Ng):吴恩达是深度学习领域的著名科学家和教育家,他的公开课包括《机器学习》、《深度学习》和《AI for Everyone》等。
- 李宏毅:李宏毅是台湾大学计算机科学系的教授,他的公开课包括《机器学习》、《深度学习》和《生成式对抗网络》等。
- 斋藤康毅:斋藤康毅是日本的一位深度学习研究者和科普作家,他的公开课包括《深度学习入门》和《深度学习进阶》等。
- 谷歌机器学习工程师课程:由谷歌机器学习工程师主讲的课程,包括《机器学习速成课程》和《深度学习课程》等。
- 斯坦福大学CS231n:由斯坦福大学计算机科学系主办的深度学习课程,涵盖了卷积神经网络、循环神经网络等内容。
以上是一些比较受欢迎的深度学习公开课老师和课程,建议选择适合自己的老师和课程进行学习。
学习 Pytorch 电脑需要什么样的配置
最低要求:
- CPU:64位CPU,支持AVX指令集
- 内存:4GB
- 显卡:支持CUDA加速的NVIDIA GPU,建议使用Tesla、Quadro、GeForce GTX 10xx/16xx/20xx系列显卡
- 硬盘:至少10GB的可用存储空间
推荐配置:
- CPU:Intel Core i7或以上
- 内存:16GB或以上
- 显卡:NVIDIA Tesla V100或以上,至少11GB显存
- 硬盘:NVMe SSD
需要注意的是,对于一些需要训练大型神经网络或使用超参数搜索的任务,需要更高的内存和显存,以及更快的硬盘读写速度。此外,在使用PyTorch时,也需要安装适当的驱动程序和CUDA库以支持GPU加速。
AI人工智能 机器学习 深度学习 学习路径及推荐书籍的更多相关文章
- 学习笔记DL002:AI、机器学习、表示学习、深度学习,第一次大衰退
AI早期成就,相对朴素形式化环境,不要求世界知识.如IBM深蓝(Deep Blue)国际象棋系统,1997,击败世界冠军Garry Kasparov(Hsu,2002).国际象棋,简单领域,64个位置 ...
- 在AI人工智能中如何巧妙学习大数据编程,成为五十万年薪的佼佼者
编辑 ai狗年 大数据和人工智能的关系,首先要说什么是大数据.这些年来,大数据先是被神化,继而又被妖魔化,到了今天,其实谁也不知道别人所谓的大数据指的是什么.我大数据从业者,建了一个大数据资源共享群1 ...
- Win32/MFC/COM学习推荐书籍
以前有不少朋友问关于学习各种技术的推荐书籍的问题,这里把我觉得比较好的一些书籍列一下,希望能起到抛砖引玉的作用就好了:) Win32开发 Programming Windows by Charles ...
- 一张图看懂AI、机器学习和深度学习的区别
AI(人工智能)是未来,是科幻小说,是我们日常生活的一部分.所有论断都是正确的,只是要看你所谈到的AI到底是什么. 例如,当谷歌DeepMind开发的AlphaGo程序打败韩国职业围棋高手Lee Se ...
- 机器学习&深度学习经典资料汇总,data.gov.uk大量公开数据
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- 近200篇机器学习&深度学习资料分享(含各种文档,视频,源码等)(1)
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定 ...
- 近200篇机器学习&深度学习资料分享【转载】
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Le ...
- 机器学习&深度学习资料分享
感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是 ...
- [转载]机器学习&深度学习经典资料汇总,全到让人震惊
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来 ...
- 人工智能之深度学习-初始环境搭建(安装Anaconda3和TensorFlow2步骤详解)
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结 ...
随机推荐
- 微信小程序从0到上线(一)环境搭建
前言: 专业术语: 步骤: 1.注册开发者账号:https://mp.weixin.qq.com/cgi-bin/wx,按照提示注册即可,如果是公司身份注册,需要公对公打款验证.
- Sql Server函数全解
--系统函数 create database sample_db; use sample_db; create table student ( i_sid int primary key identi ...
- Mysql_5.7编译部署
自述 - 概述:数据库是"按照数据结构来组织.存储和管理数据的仓库".是一个长期存储在计算机内的.有组织的.可共享的.统一管理的大量数据的集合:本文主要介绍mysql_5.7的部署 ...
- linux下文件重命名
Ubuntu下执行上面举例的重命名时,命令是这样的:rename 's/a/xxx/g' *.txt
- UIPath踩坑记一 对 COM 组件的调用返回了错误 HRESULT E_FAIL。UiPath.UiNodeClass.InjectAndRunJS
[ERROR] [UiPath.Studio] [1] 错误: System.Exception: 对 COM 组件的调用返回了错误 HRESULT E_FAIL. ---> System.Ex ...
- nginx配置https安全访问
1.使用wosigncode生成CSR https://bbs.wosign.com/forum.php?mod=viewthread&tid=3526#lastpost 2.配置,选择第7小 ...
- [扫描工具]dirsearch简单使用
[扫描工具]dirsearch简单使用 dirsearch是一个python开发的目录扫描工具.和我们平时使用的dirb.御剑之类的工具一样,就是为了扫描网站的敏感文件和目录从而找到突破口. 安装: ...
- (转载)一篇文章详解python的字符编码问题
一篇文章详解python的字符编码问题 一:什么是编码 将明文转换为计算机可以识别的编码文本称为"编码".反之从计算机可识别的编码文本转回为明文为"解码". ...
- 记一个jdbc创建数据库、用户操作时,创建新用户提示CREATE USER权限问题
手写存储表数据库信息,访问链接动态数据源操作: mysql: 1.root登录服务器 进入数据库 mysql -u root -p2.创建数据库 create database shop; shop ...
- python pandas库总结-数据分析和操作工具
参考:https://pandas.pydata.org/ Input/output相关函数 pandas.read_excel-将Excel文件读入pandas数据框 支持读取xls, xlsx, ...